Bayesian dynamic regression models for interval censored survival data with application to children dental health

被引:15
作者
Wang, Xiaojing [1 ]
Chen, Ming-Hui [2 ]
Yan, Jun [2 ,3 ,4 ]
机构
[1] Google, New York, NY USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Connecticut, Ctr Hlth, Publ Hlth Res Inst, Farmington, CT USA
[4] Univ Connecticut, Ctr Environm Sci Engn, Storrs, CT USA
关键词
Cox model; Latent variables; Markov chain Monte Carlo; Reversible jump; Semiparametric; Time-varying coefficient; TIME-DEPENDENT COEFFICIENTS; HAZARD REGRESSION; COX MODEL; INFERENCE; ALGORITHM; SPLINES;
D O I
10.1007/s10985-013-9246-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 50 条
  • [41] Marginal Bayesian Semiparametric Modeling of Mismeasured Multivariate Interval-Censored Data
    Li, Li
    Jara, Alejandro
    Jose Garcia-Zattera, Maria
    Hanson, Timothy E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (525) : 129 - 145
  • [42] A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects
    Henschel, Volkmar
    Engel, Jutta
    Hoelzel, Dieter
    Mansmann, Ulrich
    BMC MEDICAL RESEARCH METHODOLOGY, 2009, 9
  • [43] A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects
    Volkmar Henschel
    Jutta Engel
    Dieter Hölzel
    Ulrich Mansmann
    BMC Medical Research Methodology, 9
  • [44] A class of asymmetric regression models for left-censored data
    Saulo, Helton
    Leao, Jeremias
    Nobre, Juvencio
    Balakrishnan, Narayanaswamy
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (01) : 62 - 84
  • [45] Proportional hazards regression with interval-censored and left-truncated data
    Shen, Pao-Sheng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (02) : 264 - 272
  • [46] Cox regression models with functional covariates for survival data
    Gellar, Jonathan E.
    Colantuoni, Elizabeth
    Needham, Dale M.
    Crainiceanu, Ciprian M.
    STATISTICAL MODELLING, 2015, 15 (03) : 256 - 278
  • [47] Bayesian random-effects threshold regression with application to survival data with nonproportional hazards
    Pennell, Michael L.
    Whitmore, G. A.
    Lee, Mei-Ling Ting
    BIOSTATISTICS, 2010, 11 (01) : 111 - 126
  • [48] FLEXIBLE RISK PREDICTION MODELS FOR LEFT OR INTERVAL-CENSORED DATA FROM ELECTRONIC HEALTH RECORDS
    Hyun, Noorie
    Cheung, Li C.
    Pan, Qing
    Schiffman, Mark
    Katki, Hormuzd A.
    ANNALS OF APPLIED STATISTICS, 2017, 11 (02) : 1063 - 1084
  • [49] Onset of persistent pseudomonas aeruginosa infection in children with cystic fibrosis with interval censored data
    Wenjie Wang
    Ming-Hui Chen
    Sy Han Chiou
    Hui-Chuan Lai
    Xiaojing Wang
    Jun Yan
    Zhumin Zhang
    BMC Medical Research Methodology, 16
  • [50] Efficient estimation for semiparametric cure models with interval-censored data
    Hu, Tao
    Xiang, Liming
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 : 139 - 151