Bayesian dynamic regression models for interval censored survival data with application to children dental health

被引:15
作者
Wang, Xiaojing [1 ]
Chen, Ming-Hui [2 ]
Yan, Jun [2 ,3 ,4 ]
机构
[1] Google, New York, NY USA
[2] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
[3] Univ Connecticut, Ctr Hlth, Publ Hlth Res Inst, Farmington, CT USA
[4] Univ Connecticut, Ctr Environm Sci Engn, Storrs, CT USA
关键词
Cox model; Latent variables; Markov chain Monte Carlo; Reversible jump; Semiparametric; Time-varying coefficient; TIME-DEPENDENT COEFFICIENTS; HAZARD REGRESSION; COX MODEL; INFERENCE; ALGORITHM; SPLINES;
D O I
10.1007/s10985-013-9246-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cox models with time-varying coefficients offer great flexibility in capturing the temporal dynamics of covariate effects on event times, which could be hidden from a Cox proportional hazards model. Methodology development for varying coefficient Cox models, however, has been largely limited to right censored data; only limited work on interval censored data has been done. In most existing methods for varying coefficient models, analysts need to specify which covariate coefficients are time-varying and which are not at the time of fitting. We propose a dynamic Cox regression model for interval censored data in a Bayesian framework, where the coefficient curves are piecewise constant but the number of pieces and the jump points are covariate specific and estimated from the data. The model automatically determines the extent to which the temporal dynamics is needed for each covariate, resulting in smoother and more stable curve estimates. The posterior computation is carried out via an efficient reversible jump Markov chain Monte Carlo algorithm. Inference of each coefficient is based on an average of models with different number of pieces and jump points. A simulation study with three covariates, each with a coefficient of different degree in temporal dynamics, confirmed that the dynamic model is preferred to the existing time-varying model in terms of model comparison criteria through conditional predictive ordinate. When applied to a dental health data of children with age between 7 and 12 years, the dynamic model reveals that the relative risk of emergence of permanent tooth 24 between children with and without an infected primary predecessor is the highest at around age 7.5, and that it gradually reduces to one after age 11. These findings were not seen from the existing studies with Cox proportional hazards models.
引用
收藏
页码:297 / 316
页数:20
相关论文
共 50 条
  • [21] Application of Uniform Design in Survival Analysis with Censored Data
    Zhang Genxia
    Wang Guizhi
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 1862 - 1866
  • [22] Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data
    He, Baihua
    Liu, Yanyan
    Wu, Yuanshan
    Zhao, Xingqiu
    LIFETIME DATA ANALYSIS, 2020, 26 (04) : 708 - 730
  • [23] Marginal proportional hazards models for multivariate interval-censored data
    Xu, Yangjianchen
    Zeng, Donglin
    Lin, D. Y.
    BIOMETRIKA, 2023, 110 (03) : 815 - 830
  • [24] Semiparametric regression analysis of length-biased and partly interval-censored data with application to an AIDS cohort study
    Feng, Fan
    Li, Shuwei
    Wang, Peijie
    Sun, Jianguo
    Ke, Chaofu
    STATISTICS IN MEDICINE, 2023, 42 (14) : 2293 - 2310
  • [25] Bayesian analysis of transformation latent variable models with multivariate censored data
    Song, Xin-Yuan
    Pan, Deng
    Liu, Peng-Fei
    Cai, Jing-Heng
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (05) : 2337 - 2358
  • [26] An efficient penalized estimation approach for semiparametric linear transformation models with interval-censored data
    Lu, Minggen
    Liu, Yan
    Li, Chin-Shang
    Sun, Jianguo
    STATISTICS IN MEDICINE, 2022, 41 (10) : 1829 - 1845
  • [27] Application of the Bayesian dynamic survival model in medicine
    He, Jianghua
    McGee, Daniel L.
    Niu, Xufeng
    STATISTICS IN MEDICINE, 2010, 29 (03) : 347 - 360
  • [28] Linear transformation models for interval-censored data: prediction of survival probability and model checking
    Zhang, Zhigang
    STATISTICAL MODELLING, 2009, 9 (04) : 321 - 343
  • [30] Bayesian profile regression with an application to the National survey of children's health
    Molitor, John
    Papathomas, Michail
    Jerrett, Michael
    Richardson, Sylvia
    BIOSTATISTICS, 2010, 11 (03) : 484 - 498