Harnack inequality for a class of functionals with non-standard growth via De Giorgi's method

被引:18
|
作者
Ok, Jihoon [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
Non-standard growth; quasi-minimizer; Holder continuity; Harnack inequality; variable exponent; ELLIPTIC-EQUATIONS; REGULARITY; MINIMIZERS; GRADIENT; CALCULUS; LEBESGUE; SYSTEMS;
D O I
10.1515/anona-2016-0083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity theory of quasi-minimizers of functionals with L-p(.) log L-growth. In particular, we prove the Harnack inequality and, in addition, the local boundedness and the Holder continuity of the quasi-minimizers. We directly prove our results via De Giorgi's method.
引用
收藏
页码:167 / 182
页数:16
相关论文
empty
未找到相关数据