Dose calculations in heterogeneous volumes with the GATE Monte Carlo software for radiological protection

被引:3
作者
Deschler, T. [1 ,2 ]
Arbor, N. [1 ]
Carbillet, F. [2 ]
Nourreddine, A. [1 ]
机构
[1] Univ Strasbourg, CNRS, IPHC, UMR 7178, F-67000 Strasbourg, France
[2] ALARA Expertise, 7 Allee Europe, F-67960 Entzheim, France
关键词
Monte Carlo; dosimetry; voxel phantoms; radiation; medical; radiation protection; DOSIMETRY; SIMULATIONS; PARAMETERS;
D O I
10.1051/radiopro/2019014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Monte Carlo methods have become widespread in the field of radiation protection and in particular in medical physics where the use of voxelized volumes for the reconstruction of dosimetric quantities is increasing. Changing the resolution of a dose map can be useful to compare dosimetric results coming from voxelized volumes with different resolutions, or to reduce computation time. This can be done by superimposing a dosel grid with a different resolution than that of the voxelized volume. In this case, each dosel will cover several voxels, leading the Monte Carlo code to calculate the dose in heterogeneous volumes. Two algorithms are available in GATE to perform these calculations, the Volume-Weighting (V-W) and the Mass-Weighting (M-W) algorithms, the latter being the subject of this work. In a general way, the M-W algorithm tends to reconstruct a higher dose than that the V-W one. In dosels involving heavy and lightweight materials (air-skin, bone-tissue), the M-W reconstructed dose is better estimated than the V-W one (up to 10% better at the air-skin interface). Moreover, the statistical uncertainty of the M-W dose can be up to 80% lower than the V-W one at air-skin interfaces. These results show that the M-W algorithm is more suitable for radiological protection applications and must be preferentially used in GATE for dose calculations in heterogeneous volumes.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 13 条
[1]   3D dose distribution calculation in a voxelized human phantom by means of Monte Carlo method [J].
Abella, V. ;
Miro, R. ;
Juste, B. ;
Verdu, G. .
APPLIED RADIATION AND ISOTOPES, 2010, 68 (4-5) :709-713
[2]   Monte-Carlo dosimetry for intraoperative radiotherapy using a low energy x-ray source [J].
Bouzid, Dounia ;
Bert, Julien ;
Dupre, Pierre-Francois ;
Benhalouche, Saadia ;
Pradier, Olivier ;
Boussion, Nicolas ;
Visvikis, Dimitris .
ACTA ONCOLOGICA, 2015, 54 (10) :1788-1795
[3]   Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma [J].
Candela-Juan, Cristian ;
Perez-Calatayud, Jose ;
Ballester, Facundo ;
Rivard, Mark J. .
MEDICAL PHYSICS, 2013, 40 (03)
[4]   Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning [J].
Chetty, Indrin J. ;
Rosu, Mihaela ;
Kessler, Marc L. ;
Fraass, Benedick A. ;
Ten Haken, Randall K. ;
Kong, Feng-Ming ;
McShan, Daniel L. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 65 (04) :1249-1259
[5]   Medical staff extremity dosimetry in CT fluoroscopy: an anthropomorphic hand voxel phantom study [J].
Figueira, C. ;
Becker, F. ;
Blunck, C. ;
DiMaria, S. ;
Baptista, M. ;
Esteves, B. ;
Paulo, G. ;
Santos, J. ;
Teles, P. ;
Vaz, P. .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16) :5433-5448
[6]   Model-based versus specific dosimetry in diagnostic context: Comparison of three dosimetric approaches [J].
Marcatili, S. ;
Villoing, D. ;
Mauxion, T. ;
McParland, B. J. ;
Bardies, M. .
MEDICAL PHYSICS, 2015, 42 (03) :1288-1296
[7]  
Mora G, 2001, ADVANCED MONTE CARLO FOR RADIATION PHYSICS, PARTICLE TRANSPORT SIMULATION AND APPLICATIONS, P549
[8]   Internal dosimetry through GATE simulations of preclinical radiotherapy using a melanin-targeting ligand [J].
Perrot, Y. ;
Degoul, F. ;
Auzeloux, P. ;
Bonnet, M. ;
Cachin, F. ;
Chezal, J. M. ;
Donnarieix, D. ;
Labarre, P. ;
Moins, N. ;
Papon, J. ;
Rbah-Vidal, L. ;
Vidal, A. ;
Miot-Noirault, E. ;
Maigne, L. .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (09) :2183-2198
[9]   Region-oriented CT image representation for reducing computing time of Monte Carlo simulations [J].
Sarrut, David ;
Guigues, Laurent .
MEDICAL PHYSICS, 2008, 35 (04) :1452-1463
[10]   A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications [J].
Sarrut, David ;
Bardies, Manuel ;
Boussion, Nicolas ;
Freud, Nicolas ;
Jan, Sebastien ;
Letang, Jean-Michel ;
Loudos, George ;
Maigne, Lydia ;
Marcatili, Sara ;
Mauxion, Thibault ;
Papadimitroulas, Panagiotis ;
Perrot, Yann ;
Pietrzyk, Uwe ;
Robert, Charlotte ;
Schaart, Dennis R. ;
Visvikis, Dimitris ;
Buvat, Irene .
MEDICAL PHYSICS, 2014, 41 (06)