MicroRNA signatures from multidrug-resistant Mycobacterium tuberculosis

被引:20
作者
Ren, Na [1 ]
Gao, Guiju [1 ]
Sun, Yue [2 ]
Zhang, Ling [1 ]
Wang, Huizhu [1 ]
Hua, Wenhao [1 ]
Wan, Kanglin [3 ]
Li, Xingwang [1 ]
机构
[1] Capital Med Univ, Beijing Ditan Hosp, Natl Clin Key Dept Infect Dis, Beijing 100015, Peoples R China
[2] Tsinghua Univ, Hosp 1, Dept Infect Dis, Beijing 100016, Peoples R China
[3] Chinese Ctr Dis Control & Prevent, State Key Lab Infect Dis Prevent & Control, Natl Inst Communicable Dis Control & Prevent, Beijing 102206, Peoples R China
关键词
microRNA; multi-drug-resistant; next generation sequencing; Mycobacterium tuberculosis; RNA-POLYMERASE; ALLOSTERIC MODULATION; TARGET; MECHANISMS;
D O I
10.3892/mmr.2015.4262
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tuberculosis (TB) infections, caused by multidrug-resistant Mycobacterium tuberculosis (MDR MTB), remain a significant public health concern worldwide. The regulatory mechanisms underlying the emergence of MDR MTB strains remain to be fully elucidated, and further investigation is required in order to develop better strategies for TB control. The present study investigated the expression profile of microRNA (miRNA) in MTB strains, and examined the differences between sensitive MTB and MDR MTB using next generation sequencing (NGS) with Illumina Deep Sequencing technology to better understand the mechanisms of resistance in MDR MTB, A total of 5, 785 and 195, and 6, 290 and 595 qualified Illumina reads were obtained from two MDR MTB strains, and 6, 673 and 665, and 7, 210 and 217 qualified Illumina reads were obtained from two sensitive MTB strains The overall de novo assembly of miRNA sequence data generated 62 and 62, and 95 and 112 miRNAs between the 18 and 30 bp long from sensitive MTB strains and MDR MTB strains, respectively. Comparative miRNA analysis revealed that 142 miRNAs were differentially expressed in the MDR MTB strain, compared with the sensitive MTB strain, of which 48 were upregulated and 94 were downregulated. There were six similarly expressed miRNAs between the MDR and sensitive MTB strains, and 108 miRNAs were expressed only in the MDR MTB strain. The present study acquired miRNA data from sensitive MTB and MDR MTB strains using NGS techniques, and this identification miRNAs may serve as an invaluable resource for revealing the molecular basis of the regulation of expression associated with the mechanism of drug-resistance in MTB.
引用
收藏
页码:6561 / 6567
页数:7
相关论文
共 34 条
  • [1] [Anonymous], 2010, Control
  • [2] Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins
    Artsimovitch, I
    Vassylyeva, MN
    Svetlov, D
    Svetlov, V
    Perederina, A
    Igarashi, N
    Matsugaki, N
    Wakatsuki, S
    Tahirov, TH
    Vassylyev, DG
    [J]. CELL, 2005, 122 (03) : 351 - 363
  • [3] Optimization of recombinant Mycobacterium tuberculosis RNA polymerase expression and purification
    Banerjee, Rajdeep
    Rudra, Paulami
    Prajapati, Ranjit Kumar
    Sengupta, Shreya
    Mukhopadhyay, Jayanta
    [J]. TUBERCULOSIS, 2014, 94 (04) : 397 - 404
  • [4] Bao XunDi Bao XunDi, 2012, Chinese Journal of Zoonoses, V28, P659
  • [5] Baroni D, 2014, METHODS MOL BIOL, V1107, P223, DOI 10.1007/978-1-62703-748-8_13
  • [6] MicroRNAs: Target Recognition and Regulatory Functions
    Bartel, David P.
    [J]. CELL, 2009, 136 (02) : 215 - 233
  • [7] Structural mechanism for rifampicin inhibition of bacterial RNA polymerase
    Campbell, EA
    Korzheva, N
    Mustaev, A
    Murakami, K
    Nair, S
    Goldfarb, A
    Darst, SA
    [J]. CELL, 2001, 104 (06) : 901 - 912
  • [8] Chinese Medical Association, 2005, TB VOL CLIN DIAGN TR
  • [9] Exploiting current understanding of antibiotic action for discovery of new drugs
    Chopra, I
    Hesse, L
    O'Neill, AJ
    [J]. JOURNAL OF APPLIED MICROBIOLOGY, 2002, 92 : 4S - 15S
  • [10] Chopra I, 2007, CURR OPIN INVEST DR, V8, P600