On the propagation of semiclassical Wigner functions

被引:36
作者
Rios, PPD
de Almeida, AMO
机构
[1] Lab Nacl Computacao Cientif, BR-25651070 Petropolis, RJ, Brazil
[2] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 11期
关键词
D O I
10.1088/0305-4470/35/11/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish the difference between the propagation of Semiclassical Wigner functions and classical Liouville propagation. First we rediscuss the semiclassical limit for the propagator of Wigner functions, which on its own leads to their classical propagation. Then, via stationary phase evaluation of the full integral evolution equation, using the semiclassical expressions of Wigner functions, we provide the correct geometrical Prescription for their semiclassical propagation. This is determined by the classical trajectories of the tips of the chords defined by the initial semiclassical Wigner function and centred on their arguments, in contrast to the Liouville propagation which is determined by the classical trajectories of the arguments themselves.
引用
收藏
页码:2609 / 2617
页数:9
相关论文
共 50 条
[21]   Semiclassical Wigner function and geometrical optics [J].
Filippas, S ;
Makrakis, GN .
MULTISCALE MODELING & SIMULATION, 2003, 1 (04) :674-710
[22]   SOME EXTENSIONS OF SEMICLASSICAL LIMIT H-]0 FOR WIGNER FUNCTIONS ON PHASE-SPACE [J].
ARAI, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) :622-630
[24]   Semiclassical Approximation of the Wigner Function for the Canonical Ensemble [J].
Marcos Gil de Oliveira ;
Alfredo Miguel Ozorio de Almeida .
Journal of Statistical Physics, 190
[25]   Wigner transforms and their application to semiclassical/homogenization limits [J].
Mauser, NJ .
5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, :376-382
[26]   Semiclassical dynamics in Wigner phase space II: Nonadiabatic hybrid Wigner dynamics [J].
Malpathak, Shreyas ;
Ananth, Nandini .
JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (09)
[27]   SEMICLASSICAL ANALYSIS IN INFINITE DIMENSIONS: WIGNER MEASURES [J].
Falconi, Marco .
BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2016, 1 :18-35
[28]   Semiclassical Approximation of the Wigner Function for the Canonical Ensemble [J].
de Oliveira, Marcos Gil ;
de Almeida, Alfredo Miguel Ozorio .
JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (09)
[29]   THE WIGNER-WEYL FORMALISM AND THE RELATIVISTIC SEMICLASSICAL APPROXIMATION [J].
MOURAD, J .
PHYSICS LETTERS A, 1993, 179 (4-5) :231-234
[30]   New insights into the semiclassical Wigner treatment of photodissociation dynamics [J].
Arbelo-Gonzalez, W. ;
Bonnet, L. ;
Garcia-Vela, A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (25) :9994-10011