A short proof of the wonderful lemma

被引:0
|
作者
Chudnovsky, Maria [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
perfect graphs; wonderful lemma; GRAPHS;
D O I
10.1002/jgt.22155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Wonderful Lemma, that was first proved by Roussel and Rubio, is one of the most important tools in the proof of the Strong Perfect Graph Theorem. Here we give a short proof of this lemma.
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [41] Beyond the Lovasz Local Lemma: Point to Set Correlations and Their Algorithmic Applications
    Achlioptas, Dimitris
    Iliopoulos, Fotis
    Sinclair, Alistair
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 725 - 744
  • [42] Automatic Proof of Graph Nonisomorphism
    Cohen, Arjeh M.
    Knopper, Jan Willem
    Murray, Scott H.
    MATHEMATICS IN COMPUTER SCIENCE, 2008, 2 (02) : 211 - 229
  • [43] A PROOF OF RINGEL'S CONJECTURE
    Montgomery, R.
    Pokrovskiy, A.
    Sudakov, B.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (03) : 663 - 720
  • [44] A proof of the universal fixer conjecture
    Rosicka, Monika
    UTILITAS MATHEMATICA, 2018, 108 : 125 - 132
  • [45] A Bijective Proof of a Theorem of Knuth
    Bidkhori, Hoda
    Kishore, Shaunak
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (01): : 11 - 25
  • [46] The proof of a conjecture due to Snevily
    Gao, Ze-Tu
    Yin, Jian-Hua
    DISCRETE MATHEMATICS, 2010, 310 (10-11) : 1614 - 1621
  • [47] Proof of the Clustered Hadwiger Conjecture
    Dujmovic, Vida
    Esperet, Louis
    Morin, Pat
    Wood, David R.
    2023 IEEE 64TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, FOCS, 2023, : 1921 - 1930
  • [48] Randomized Proof-Labeling Schemes
    Baruch, Mor
    Fraigniaud, Pierre
    Patt-Shamir, Boaz
    PODC'15: PROCEEDINGS OF THE 2015 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2015, : 315 - 324
  • [49] A proof of the rooted tree alternative conjecture
    Tyomkyn, Mykhaylo
    DISCRETE MATHEMATICS, 2009, 309 (20) : 5963 - 5967
  • [50] A Proof of the (n, k, t)-Conjectures
    Baumann, Stacie
    Briggs, Joseph
    ELECTRONIC JOURNAL OF COMBINATORICS, 2025, 32 (01):