A short proof of the wonderful lemma

被引:0
|
作者
Chudnovsky, Maria [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
perfect graphs; wonderful lemma; GRAPHS;
D O I
10.1002/jgt.22155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Wonderful Lemma, that was first proved by Roussel and Rubio, is one of the most important tools in the proof of the Strong Perfect Graph Theorem. Here we give a short proof of this lemma.
引用
收藏
页码:271 / 274
页数:4
相关论文
共 50 条
  • [31] A generalization of Fiedler's lemma and its applications
    Wu, Yangyang
    Ma, Xiaoling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 604 - 620
  • [32] Limits of kernel operators and the spectral regularity lemma
    Szegedy, Balazs
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (07) : 1156 - 1167
  • [33] General Transmission Lemma and Wiener complexity of triangular grids
    Klavzar, Sandi
    Jemilet, D. Azubha
    Rajasingh, Indra
    Manuel, Paul
    Parthiban, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 115 - 122
  • [34] DOUBLING METRIC SPACES ARE CHARACTERIZED BY A LEMMA OF BENJAMINI AND SCHRAMM
    Gill, James T.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4291 - 4295
  • [35] An Approximate Blow-up Lemma for Sparse Hypergraphs
    Allen, Peter
    Boettcher, Julia
    Hng, Eng Keat
    Skokan, Jozef
    Davies, Ewan
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 394 - 403
  • [36] On the Black-Box Complexity of Sperner's Lemma
    Friedl, Katalin
    Ivanyos, Gabor
    Santha, Miklos
    Verhoeven, Yves F.
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (03) : 629 - 646
  • [37] The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph
    Fallat, Shaun M.
    Hall, H. Tracy
    Lin, Jephian C. -H.
    Shader, Bryan L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 648 : 70 - 87
  • [38] A tight lower bound for Szemer,di's regularity lemma
    Fox, Jacob
    Lovasz, Laszlo Miklos
    COMBINATORICA, 2017, 37 (05) : 911 - 951
  • [39] A Proof of the Molecular Conjecture
    Katoh, Naoki
    Tanigawa, Shin-ichi
    PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 296 - 305
  • [40] A Proof of a Conjecture of Ohba
    Noel, Jonathan A.
    Reed, Bruce A.
    Wu, Hehui
    JOURNAL OF GRAPH THEORY, 2015, 79 (02) : 86 - 102