HOLOMORPHIC QUILLEN DETERMINANT LINE BUNDLES ON INTEGRAL COMPACT KAHLER MANIFOLDS

被引:3
作者
Dey, Rukmini [1 ]
Mathai, Varghese [2 ]
机构
[1] Harishchandra Res Inst, Dept Math, Allahabad, Uttar Pradesh, India
[2] Univ Adelaide, Dept Pure Math, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
VORTICES;
D O I
10.1093/qmath/has040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any compact Kahler manifold with integral Kahler form, parametrizes a natural holomorphic family of Cauchy-Riemann operators on the Riemann sphere such that the Quillen determinant line bundle of this family is isomorphic to a sufficiently high tensor power of the holomorphic line bundle determined by the integral Kahler form. We also establish a symplectic version of the result. We conjecture that an equivariant version of our result is true.
引用
收藏
页码:785 / 794
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[2]  
[Anonymous], 1977, J DIFFERENTIAL GEOME
[3]   The determinant bundle on the moduli space of stable triples over a curve [J].
Biswas, I ;
Raghavendra, N .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (03) :367-382
[4]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[5]   Geometric prequantization of the moduli space of the vortex equations on a Riemann surface [J].
Dey, Rukmini .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[6]   Geometric prequantization of the moduli space of the vortex equations on a Riemann surface (vol 47, 103501, 2006) [J].
Dey, Rukmini .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
[7]  
Griffiths P., 1978, PRINCIPLES ALGEBRAIC
[8]   GEOMETRIC-QUANTIZATION AND MULTIPLICITIES OF GROUP-REPRESENTATIONS [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1982, 67 (03) :515-538
[9]  
JAFFE A, 1980, PROGR PHYS, V2
[10]   Volume of vortex moduli spaces [J].
Manton, NS ;
Nasir, SM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 199 (03) :591-604