Spectral integration from dominated ergodic estimates

被引:5
作者
Berkson, E
Gillespie, TA
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Edinburgh, Dept Math & Stat, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
D O I
10.1215/ijm/1255985106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that (Omega, M, mu) is a sigma-finite measure space, 1 < p < infinity, and T: L-p(mu) --> L-P(mu) is a bounded, invertible, separation-preserving linear operator Such that the two-sided ergodic means of the linear modulus of T are uniformly bounded in norm. Using the spectral structure of T, we obtain a functional calculus for T associated with the algebra of Marcinkiewicz multipliers defined on the unit circle.
引用
收藏
页码:500 / 519
页数:20
相关论文
共 19 条
[1]   POINTWISE ERGODIC THEOREM IN LRHO-SPACES [J].
AKCOGLU, MA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1975, 27 (05) :1075-1082
[2]  
[Anonymous], 1977, REGIONAL C SERIES MA
[3]   SPECTRAL INTEGRATION OF MARCINKIEWICZ MULTIPLIERS [J].
ASMAR, N ;
BERKSON, E ;
GILLESPIE, TA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (03) :470-482
[4]   STECKINS THEOREM, TRANSFERENCE, AND SPECTRAL DECOMPOSITIONS [J].
BERKSON, E ;
GILLESPIE, TA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 70 (01) :140-170
[5]  
BERKSON E, 1994, STUD MATH, V112, P13
[6]  
BERKSON E, 1985, J OPERAT THEOR, V13, P33
[7]   FOURIER-SERIES CRITERIA FOR OPERATOR DECOMPOSABILITY [J].
BERKSON, E ;
GILLESPIE, TA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1986, 9 (06) :767-789
[8]   Multipliers for weighted Lp-spaces, transference, and the q-variation of functions [J].
Berkson, E ;
Gillespie, TA .
BULLETIN DES SCIENCES MATHEMATIQUES, 1998, 122 (06) :427-454
[9]   Mean-boundedness and Littlewood-Paley for separation-preserving operators [J].
Berkson, E ;
Gillespie, TA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (03) :1169-1189