Spectral structure of the Laplacian on a covering graph

被引:38
作者
Higuchi, Yusuke [1 ]
Nomura, Yuji [2 ]
机构
[1] Showa Univ, Coll Arts & Sci, Math Labs, Fujiyoshida, Yamanashi 4030005, Japan
[2] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
D O I
10.1016/j.ejc.2008.03.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the spectral structure of the discrete Laplacian on an infinite graph. We show that, for a finite graph including a certain kind of a family of cycles, the spectrum of the Laplacian on its homology universal covering graph has band structure and no eigenvalues; furthermore it is purely absolutely continuous. Interesting examples that illustrate our theorems are also exhibited. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:570 / 585
页数:16
相关论文
共 17 条
[1]   DENSITY-OF-STATES IN SPECTRAL GEOMETRY [J].
ADACHI, T ;
SUNADA, T .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :480-493
[2]   A NOTE ON THE FOLNER CONDITION FOR AMENABILITY [J].
ADACHI, T .
NAGOYA MATHEMATICAL JOURNAL, 1993, 131 :67-74
[3]  
Babler F., 1938, COMMENT MATH HELV, V10, P275
[4]  
Bollobas B., 1998, Modern graph theory
[5]  
Cycon H.L., 1987, Schrodinger Operators with Application to Quantum Mechanics and Global Geometry
[6]  
Diestel R., 2000, Graph Theory
[7]  
Fo lner E., 1955, Math. Scand., V3, P243, DOI DOI 10.7146/MATH.SCAND.A-10442
[8]   The Mourre theory for analytically fibered operators [J].
Gerard, C ;
Nier, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 152 (01) :202-219
[9]  
HIGUCHI TY, 2004, AMS CONT MATH, V347, P29
[10]  
HIGUCHI TY, 1999, YOKOHAMA MATH J, V47, P129