Adaptive Wavelet Computations for Inverses of Pseudo-Differential Operators

被引:4
作者
Guo, Qiang [1 ]
Wong, M. W. [2 ]
机构
[1] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
来源
PSEUDO-DIFFERENTIAL OPERATORS: ANALYSIS, APPLICATIONS AND COMPUTATIONS | 2011年 / 213卷
基金
加拿大自然科学与工程研究理事会;
关键词
Multiresolution analysis; scaling functions; wavelets; biorthogonal wavelets; vanishing moments; Sobolev spaces; pseudo-differential operators; Galerkin approximations; adaptive algorithms; BASES;
D O I
10.1007/978-3-0348-0049-5_1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For invertible pseudo-differential operators T-sigma, with symbols a in S-m, m is an element of R, we use biorthogonal wavelets to develop an adaptive algorithm to compute the Galerkin approximations of the solution u in the Sobolev space H-m,H-2 of the equation T(sigma)u = f on R for every f in L-2(R).
引用
收藏
页码:1 / 14
页数:14
相关论文
共 8 条
[1]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[2]  
Cohen Albert, 2003, Numerical Analysis of wavelet Methods. J. Studies in Mathematics and Its Applications, V32
[3]   Stable multiscale bases and local error estimation for elliptic problems [J].
Dahlke, S ;
Dahmen, W ;
Hochmuth, R ;
Schneider, R .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :21-47
[4]  
Dasgupta A, 2009, OPER THEORY ADV APPL, V189, P107
[5]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[6]   BOUNDEDNESS AND SPECTRAL INVARIANCE FOR STANDARD PSEUDODIFFERENTIAL-OPERATORS ON ANISOTROPICALLY WEIGHTED LP-SOBOLEV SPACES [J].
SCHROHE, E .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (02) :271-284
[7]  
Wong M. W., 2005, ADV IN ANAL, P275
[8]  
Wong M.W., 1999, INTRO PSEUDODIFFEREN