Multiscale methods for data on graphs and irregular multidimensional situations

被引:59
|
作者
Jansen, Maarten [2 ]
Nason, Guy P. [1 ]
Silverman, B. W. [3 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Katholieke Univ Leuven, Louvain, Belgium
[3] Univ Oxford, St Peters Coll, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Graph; Irregular data; Lifting; Wavelets; Wavelet shrinkage; WAVELET TRANSFORMS; LIFTING-SCHEME; REGULARIZATION; REGRESSION; SHRINKAGE; THRESHOLD; ALGORITHM; SELECTION;
D O I
10.1111/j.1467-9868.2008.00672.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For regularly spaced one-dimensional data, wavelet shrinkage has proven to be a compelling method for non-parametric function estimation. We create three new multiscale methods that provide wavelet-like transforms both for data arising on graphs and for irregularly spaced spatial data in more than one dimension. The concept of scale still exists within these transforms, but as a continuous quantity rather than dyadic levels. Further, we adapt recent empirical Bayesian shrinkage techniques to enable us to perform multiscale shrinkage for function estimation both on graphs and for irregular spatial data. We demonstrate that our methods perform very well when compared with several other methods for spatial regression for both real and simulated data. Although we concentrate on multiscale shrinkage (regression) we present our new 'wavelet transforms' as generic tools intended to be the basis of methods that might benefit from a multiscale representation of data either on graphs or for irregular spatial data.
引用
收藏
页码:97 / 125
页数:29
相关论文
共 50 条
  • [31] Multiscale statistical image models and Bayesian methods
    Pizurica, A
    Philips, W
    WAVELET APPLICATIONS IN INDUSTRIAL PROCESSING, 2003, 5266 : 60 - 74
  • [32] Multiscale processing of mass spectrometry data
    Randolph, T. W.
    Yasui, Y.
    BIOMETRICS, 2006, 62 (02) : 589 - 597
  • [33] Multiscale representation for irregularly spaced data
    Jang, Dongik
    Kim, Donghoh
    Kim, Kyungmee O.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 641 - 653
  • [34] Multiscale representation for irregularly spaced data
    Dongik Jang
    Donghoh Kim
    Kyungmee O. Kim
    Journal of the Korean Statistical Society, 2017, 46 : 641 - 653
  • [35] Design methods for irregular repeat-accumulate codes
    Roumy, A
    Guemghar, S
    Caire, G
    Verdú, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1711 - 1727
  • [36] About S-packing coloring of 3-irregular subcubic graphs
    Mortada, Maidoun
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 16 - 18
  • [37] Multiscale methods for levitron problems: Theory and applications
    Geiser, Juergen
    COMPUTERS & STRUCTURES, 2013, 122 : 27 - 32
  • [38] Multiscale SPC in the Presence of Multiresolution Data
    Reis, Marco S.
    Saraiva, Pedro M.
    16TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING AND 9TH INTERNATIONAL SYMPOSIUM ON PROCESS SYSTEMS ENGINEERING, 2006, 21 : 1359 - 1364
  • [39] Multidimensional Fitting for Multivariate Data Analysis
    Berge, Claude
    Froloff, Nicolas
    Kalathur, Ravi Kiran Reddy
    Maumy, Myriam
    Poch, Olivier
    Raffelsberger, Wolfgang
    Wicker, Nicolas
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2010, 17 (05) : 723 - 732
  • [40] Optimization of multidimensional aggregates in data warehouses
    Pears, Russel
    Houliston, Bryan
    JOURNAL OF DATABASE MANAGEMENT, 2007, 18 (01) : 69 - 93