Multiscale methods for data on graphs and irregular multidimensional situations

被引:59
|
作者
Jansen, Maarten [2 ]
Nason, Guy P. [1 ]
Silverman, B. W. [3 ]
机构
[1] Univ Bristol, Dept Math, Bristol BS8 1TW, Avon, England
[2] Katholieke Univ Leuven, Louvain, Belgium
[3] Univ Oxford, St Peters Coll, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Graph; Irregular data; Lifting; Wavelets; Wavelet shrinkage; WAVELET TRANSFORMS; LIFTING-SCHEME; REGULARIZATION; REGRESSION; SHRINKAGE; THRESHOLD; ALGORITHM; SELECTION;
D O I
10.1111/j.1467-9868.2008.00672.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For regularly spaced one-dimensional data, wavelet shrinkage has proven to be a compelling method for non-parametric function estimation. We create three new multiscale methods that provide wavelet-like transforms both for data arising on graphs and for irregularly spaced spatial data in more than one dimension. The concept of scale still exists within these transforms, but as a continuous quantity rather than dyadic levels. Further, we adapt recent empirical Bayesian shrinkage techniques to enable us to perform multiscale shrinkage for function estimation both on graphs and for irregular spatial data. We demonstrate that our methods perform very well when compared with several other methods for spatial regression for both real and simulated data. Although we concentrate on multiscale shrinkage (regression) we present our new 'wavelet transforms' as generic tools intended to be the basis of methods that might benefit from a multiscale representation of data either on graphs or for irregular spatial data.
引用
收藏
页码:97 / 125
页数:29
相关论文
共 50 条
  • [1] Penalized wavelet estimation and robust denoising for irregular spaced data
    Amato, Umberto
    Antoniadis, Anestis
    De Feis, Italia
    Gijbels, Irene
    COMPUTATIONAL STATISTICS, 2022, 37 (04) : 1621 - 1651
  • [2] Tensor-Train networks for learning predictive modeling of multidimensional data
    da Costa, Nazareth
    Attux, Romis
    Cichocki, Andrzej
    Romano, Joao M. T.
    NEUROCOMPUTING, 2025, 637
  • [3] Nonseparable Laplacian Pyramids with Multiscale Local Polynomials for Scattered Data
    Jansen, Maarten
    21ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP 2014), 2014, : 115 - 118
  • [4] Nonlocal Multiscale Hierarchical Decomposition on Graphs
    Hidane, Moncef
    Lezoray, Olivier
    Ta, Vinh-Thong
    Elmoataz, Abderrahim
    COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 : 638 - 650
  • [5] Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs
    Garcia-Cardona, Cristina
    Merkurjev, Ekaterina
    Bertozzi, Andrea L.
    Flenner, Arjuna
    Percus, Allon G.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (08) : 1600 - 1613
  • [6] On 2-Connected Transmission Irregular Graphs
    Dobrynin A.A.
    Dobrynin, A.A. (dobr@math.nsc.ru), 2018, Pleiades journals (12) : 642 - 647
  • [7] Data dimension reduction and visualization with application to multidimensional gearbox diagnostics data: comparison of several methods
    Bartkowiak, Anna
    Zimroz, Radoslaw
    MECHATRONIC SYSTEMS, MECHANICS AND MATERIALS, 2012, 180 : 177 - +
  • [8] Multivariate realized volatility: an analysis via shrinkage methods for Brazilian market data
    Vieira, Leonardo Ieracitano
    Laurini, Marcio Poletti
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10
  • [9] The switch Markov chain for sampling irregular graphs and digraphs
    Greenhill, Catherine
    Sfragara, Matteo
    THEORETICAL COMPUTER SCIENCE, 2018, 719 : 1 - 20
  • [10] Multiscale Denoising of Biological Data: A Comparative Analysis
    Nounou, M. N.
    Nounou, H. N.
    Meskin, N.
    Datta, A.
    Dougherty, E. R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2012, 9 (05) : 1539 - 1544