Central limit theorem for linear spectral statistics of large dimensional separable sample covariance matrices

被引:10
作者
Bai, Zhidong [1 ,2 ]
Li, Huiqin [3 ]
Pan, Guangming [4 ]
机构
[1] Northeast Normal Univ, KLASMOE, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Jilin, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[4] Nanyang Technol Univ, Sch Phys & Mathmat Sci, Div Math Sci, Singapore 637371, Singapore
关键词
central limit theorem; linear spectral statistics; random matrix theory; separable sample covariance matrix; EIGENVALUE; PRODUCT; TESTS; RATIO;
D O I
10.3150/18-BEJ1038
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that X-n = (x(jk)) is N x n whose elements are independent complex variables with mean zero, variance 1. The separable sample covariance matrix is defined as Bn = 1/N T-2n(1/2) XnT1nXn* T-2n(1/2) where T-1n is a Hermitian matrix and T-2n(1/2) is a Hermitian square root of the nonnegative definite Hermitian matrix T-2n. Its linear spectral statistics (LSS) are shown to have Gaussian limits when n/N approaches a positive constant under some conditions.
引用
收藏
页码:1838 / 1869
页数:32
相关论文
共 21 条
[11]   GAUSSIAN FLUCTUATIONS FOR LINEAR SPECTRAL STATISTICS OF LARGE RANDOM COVARIANCE MATRICES [J].
Najim, Jamal ;
Yao, Jianfeng .
ANNALS OF APPLIED PROBABILITY, 2016, 26 (03) :1837-1887
[12]   DETERMINING THE NUMBER OF FACTORS FROM EMPIRICAL DISTRIBUTION OF EIGENVALUES [J].
Onatski, Alexei .
REVIEW OF ECONOMICS AND STATISTICS, 2010, 92 (04) :1004-1016
[13]  
Pan G, 2019, CENTRAL LIMIT THEO S, DOI [10.3150/18-BEJ1038SUPP, DOI 10.3150/18-BEJ1038SUPP]
[14]   Central limit theorem for signal-to-interference ratio of reduced rank linear receiver [J].
Pan, G. M. ;
Zhou, W. .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (03) :1232-1270
[15]   No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix [J].
Paul, Debashis ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (01) :37-57
[16]  
Shcherbina M, 2011, J MATH PHYS ANAL GEO, V7, P176
[17]  
Tulino A. M., 2004, Foundations and Trends in Communications and Information Theory, V1, P1, DOI 10.1561/0100000001
[18]   The generalised product moment distribution in samples from a normal multivariate population [J].
Wishart, J .
BIOMETRIKA, 1928, 20A :32-52
[19]  
YAO J., 2015, Cambridge Series in Statistical and Probabilistic Mathematics, V39, DOI [DOI 10.1017/CBO9781107588080, 10.1017/cbo9781107588080]
[20]   ON THE LIMIT OF THE LARGEST EIGENVALUE OF THE LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
YIN, YQ ;
BAI, ZD ;
KRISHNAIAH, PR .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (04) :509-521