Long-time behavior of nonlinear integro-differential evolution equations

被引:9
作者
Sanchez, Justino [1 ]
Vergara, Vicente [2 ]
机构
[1] Univ La Serena, Dept Matemat, La Serena, Chile
[2] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
Integro-differential evolution equations; Fractional derivative; Gradient sytem; Lyapunov function; Convergence to steady state; Lojasiewicz-Simon inequality; DIFFERENTIAL-EQUATIONS; ASYMPTOTIC-BEHAVIOR; HEAT-CONDUCTION; STEADY-STATES; CONVERGENCE;
D O I
10.1016/j.na.2013.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior as time tends to infinity of globally bounded strong solutions to certain integro-differential equations in Hilbert spaces. Based on an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we prove that any globally bounded strong solution converges to a steady state in a real Hilbert space. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:20 / 31
页数:12
相关论文
共 25 条
[11]  
Grasselli M, 2008, ASYMPTOTIC ANAL, V56, P229
[12]   Asymptotic behavior of a thermoviscoelastic plate with memory effects [J].
Grasselli, Maurizio ;
Munoz Rivera, Jaime E. ;
Squassina, Marco .
ASYMPTOTIC ANALYSIS, 2009, 63 (1-2) :55-84
[13]  
GRIPENBERG G, 1985, J DIFFER EQUATIONS, V60, P57, DOI 10.1016/0022-0396(85)90120-2
[14]   A GENERAL THEORY OF HEAT CONDUCTION WITH FINITE WAVE SPEEDS [J].
GURTIN, ME ;
PIPKIN, AC .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1968, 31 (02) :113-&
[15]  
Huang S.Z., 2006, MATH SURVEYS MONOGRA, V126
[16]   Convergence in gradient-like systems which are asymptotically autonomous and analytic [J].
Huang, SZ ;
Takác, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (05) :675-698
[17]  
MACCAMY RC, 1977, Q APPL MATH, V35, P1
[18]   HEAT CONDUCTION IN MATERIALS WITH MEMORY [J].
NUNZIATO, JW .
QUARTERLY OF APPLIED MATHEMATICS, 1971, 29 (02) :187-&
[19]   WELL-POSEDNESS AND LONG-TIME BEHAVIOUR FOR THE NON-ISOTHERMAL CAHN-HILLIARD EQUATION WITH MEMORY [J].
Pruess, Jan ;
Vergara, Vicente ;
Zacher, Rico .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (02) :625-647
[20]  
Pruss J., 1993, EVOLUTIONARY INTEGRA, DOI 10.1007/978-3-0348-8570-6