Long-time behavior of nonlinear integro-differential evolution equations

被引:9
作者
Sanchez, Justino [1 ]
Vergara, Vicente [2 ]
机构
[1] Univ La Serena, Dept Matemat, La Serena, Chile
[2] Univ Tarapaca, Inst Alta Invest, Arica, Chile
关键词
Integro-differential evolution equations; Fractional derivative; Gradient sytem; Lyapunov function; Convergence to steady state; Lojasiewicz-Simon inequality; DIFFERENTIAL-EQUATIONS; ASYMPTOTIC-BEHAVIOR; HEAT-CONDUCTION; STEADY-STATES; CONVERGENCE;
D O I
10.1016/j.na.2013.06.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the long-time behavior as time tends to infinity of globally bounded strong solutions to certain integro-differential equations in Hilbert spaces. Based on an appropriate new Lyapunov function and the Lojasiewicz-Simon inequality, we prove that any globally bounded strong solution converges to a steady state in a real Hilbert space. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:20 / 31
页数:12
相关论文
共 25 条
[1]  
Aizicovici S., 2001, J. Evol. Equ, V1, P69, DOI [10.1007/PL00001365, DOI 10.1007/PL00001365]
[2]  
Amann H, 1997, MATH NACHR, V186, P5
[3]  
[Anonymous], 1990, ENCY MATH APPL
[4]   Convergence to steady states of solutions of semilinear evolutionary integral equations [J].
Chill, R ;
Fasangová, E .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 22 (03) :321-342
[5]   On the Lojasiewicz-Simon gradient inequality [J].
Chill, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :572-601
[6]   Convergence to steady states in asymptotically autonomous semilinear evolution equations [J].
Chill, R ;
Jendoubi, MA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (7-8) :1017-1039
[7]   GLOBAL EXISTENCE FOR A SEMILINEAR PARABOLIC VOLTERRA EQUATION [J].
CLEMENT, P ;
PRUSS, J .
MATHEMATISCHE ZEITSCHRIFT, 1992, 209 (01) :17-26
[8]   Quasilinear evolutionary equations and continuous interpolation spaces [J].
Clément, P ;
Londen, SO ;
Simonett, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 196 (02) :418-447
[9]  
Fasangová E, 1999, PROG NONLIN, V35, P213
[10]   Asymptotic behaviour of a semilinear viscoelastic beam model [J].
Fasangová, E ;
Prüss, J .
ARCHIV DER MATHEMATIK, 2001, 77 (06) :488-497