'Multicopy Multivalent' Glycopolymer-Stabilized Gold Nanoparticles as Potential Synthetic Cancer Vaccines

被引:179
作者
Parry, Alison L. [1 ,2 ,3 ]
Clemson, Natasha A. [1 ,2 ]
Ellis, James [1 ,2 ]
Bernhard, Stefan S. R. [1 ,2 ]
Davis, Benjamin G. [3 ]
Cameron, Neil R. [1 ,2 ]
机构
[1] Univ Durham, Dept Chem, Durham DH1 3LE, England
[2] Univ Durham, Biophys Sci Inst, Durham DH1 3LE, England
[3] Univ Oxford, Dept Chem, Chem Res Lab, Oxford OX1 3TA, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
FRAGMENTATION CHAIN-TRANSFER; THOMSEN-FRIEDENREICH DISACCHARIDE; T-CELL EPITOPE; GLYCOPEPTIDE ANTIGENS; ANTICANCER VACCINE; MUC1; GLYCOPEPTIDES; CONJUGATE VACCINE; BREAST-CANCER; PLUS QS21; GLYCONANOPARTICLES;
D O I
10.1021/ja4046857
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mucin-related carbohydrates are overexpressed on the surface of cancer cells, providing a disease-specific target for cancer immunotherapy. Here, we describe the design and construction of peptide-free multivalent glycosylated nanoscale constructs as potential synthetic cancer vaccines that generate significant titers of antibodies selective for aberrant mucin glycans. A polymerizable version of the Tn-antigen glycan was prepared and converted into well-defined glycopolymers by Reversible Addition Fragmentation chain Transfer (RAFT) polymerization. The polymers were then conjugated to gold nanoparticles, yielding 'multicopy-multivalent nanoscale glycoconjugates. Immunological studies indicated that these nanomaterials generated strong and long-lasting production of antibodies that are selective to the Tn-antigen glycan and cross-reactive toward mucin proteins displaying Tn. The results demonstrate proof-of-concept of a simple and modular approach toward synthetic anticancer vaccines based on multivalent glycosylated nanomaterials without the need for a typical vaccine protein component.
引用
收藏
页码:9362 / 9365
页数:4
相关论文
共 54 条
[1]   Gold glyconanoparticles:: Synthetic polyvalent ligands mimicking glycocalyx-like surfaces as tools for glycobiological studies [J].
Barrientos, AG ;
de la Fuente, JM ;
Rojas, TC ;
Fernández, A ;
Penadés, S .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :1909-1921
[2]   MUC1 immunotherapy [J].
Beatson, Richard E. ;
Taylor-Papadimitriou, Joyce ;
Burchell, Joy M. .
IMMUNOTHERAPY, 2010, 2 (03) :305-327
[3]   Design and Synthesis of Multifunctional Gold Nanoparticles Bearing Tumor-Associated Glycopeptide Antigens as Potential Cancer Vaccines [J].
Brinas, Raymond P. ;
Sundgren, Andreas ;
Sahoo, Padmini ;
Morey, Susan ;
Rittenhouse-Olson, Kate ;
Wilding, Greg E. ;
Deng, Wei ;
Barchi, Joseph J., Jr. .
BIOCONJUGATE CHEMISTRY, 2012, 23 (08) :1513-1523
[4]   Towards a fully synthetic carbohydrate-based anticancer vaccine: Synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated Tn antigen [J].
Buskas, T ;
Ingale, S ;
Boons, GJ .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (37) :5985-5988
[5]   Immunotherapy for cancer: synthetic carbohydrate-based vaccines [J].
Buskas, Therese ;
Thompson, Pamela ;
Boons, Geert-Jan .
CHEMICAL COMMUNICATIONS, 2009, (36) :5335-5349
[6]  
Cai H., 2011, CHEM-EUR J, V17, P6396
[7]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562
[8]   B cell antigen receptor signaling 101 [J].
Dal Porto, JM ;
Gauld, SB ;
Merrell, KT ;
Mills, D ;
Pugh-Bernard, AE ;
Cambier, J .
MOLECULAR IMMUNOLOGY, 2004, 41 (6-7) :599-613
[9]  
Danishefsky SJ, 2000, ANGEW CHEM INT EDIT, V39, P836, DOI 10.1002/(SICI)1521-3773(20000303)39:5<836::AID-ANIE836>3.0.CO
[10]  
2-I