A global optimization algorithm for multivariate functions with Lipschitzian first derivatives

被引:35
作者
Gergel, VP [1 ]
机构
[1] UNIV NIZHNI NOVGOROD, SOFTWARE DEPT, NIZHNII NOVGOROD 603600, RUSSIA
基金
俄罗斯基础研究基金会;
关键词
global optimization; multiextremal algorithms; Lipschitzian first derivatives; convergence; numerical experiments;
D O I
10.1023/A:1008290629896
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we propose a new multi-dimensional method to solve unconstrained global optimization problems with Lipschitzian first derivatives. The method is based on a partition scheme that subdivides the search domain into a set of hypercubes in the course of optimization. This partitioning is regulated by the decision rule that provides evaluation of the ''importance'' of each generated hypercube and selection of some partition element to perform the next iteration. Sufficient conditions of global convergence for the new method are investigated. Results of numerical experiments are also presented.
引用
收藏
页码:257 / 281
页数:25
相关论文
共 29 条
[1]  
[Anonymous], 1978, NUMERICAL METHODS MU
[2]  
[Anonymous], 1995, Handbook of global optimization, Nonconvex Optimization and its Applications
[3]  
[Anonymous], 1992, SYSTEMS DYNAMICS OPT
[4]  
Archetti F., 1984, Annals of Operations Research, V1, P87, DOI 10.1007/BF01876141
[5]   ACCELERATIONS FOR A VARIETY OF GLOBAL OPTIMIZATION METHODS [J].
BARITOMPA, W .
JOURNAL OF GLOBAL OPTIMIZATION, 1994, 4 (01) :37-45
[6]   A DETERMINISTIC ALGORITHM FOR GLOBAL OPTIMIZATION [J].
BREIMAN, L ;
CUTLER, A .
MATHEMATICAL PROGRAMMING, 1993, 58 (02) :179-199
[7]  
BUTZ AR, 1968, INFORM CONTR, V12, P319
[8]  
Dixon L., 1978, GLOBAL OPTIMIZATION, V2
[9]  
EVTUSHENKO YG, 1994, NATO ADV SCI INST SE, V434, P481
[10]  
Evtushenko Yu. G., 1971, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V11, P1390