High Rayleigh number convection in a one-dimensional model

被引:1
作者
Bhattacharyya, S. N. [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kharagpur 721302, W Bengal, India
关键词
PROBABILITY DENSITY-FUNCTIONS; HARD-TURBULENT CONVECTION; KOLMOGOROV TURBULENCE; THERMAL-CONVECTION; BURGERS-EQUATION; FLUID; FLUCTUATIONS;
D O I
10.1103/PhysRevE.92.033006
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A model for one-dimensional convection is proposed by adding a buoyancy term to the Burgers' equation and including an equation for the temperature perturbation. A linear stability analysis shows onset of instability at a critical Rayleigh number. Computation in the unstable region shows steady convection with only one convection cell. Computations up to 10(5) times the critical Rayleigh number do not show transition to an oscillatory state or to turbulence. Using a large Rayleigh number approximation, closed form solutions for the spectrum and the scaling for the heat transport due to nonlinear convection are obtained up to two orders. These are shown to be in good agreement with numerical results at high Rayleigh number.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Non-Oberbeck-Boussinesq effects in strongly turbulent Rayleigh-Benard convection [J].
Ahlers, Guenter ;
Brown, Eric ;
Araujo, Francisco Fontenele ;
Funfschilllng, Denis ;
Grossmann, Siegfried ;
Lohse, Detlef .
JOURNAL OF FLUID MECHANICS, 2006, 569 :409-445
[2]  
[Anonymous], 2014, Table of Integrals, Series, and Products
[3]   Forced Burgers equation in an unbounded domain [J].
Bec, J ;
Khanin, K .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (5-6) :741-759
[4]   Burgers turbulence [J].
Bec, Jeremie ;
Khanin, Konstantin .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 447 (1-2) :1-66
[5]   TABLE OF SOLUTIONS OF ONE-DIMENSIONAL BURGERS EQUATION [J].
BENTON, ER ;
PLATZMAN, GW .
QUARTERLY OF APPLIED MATHEMATICS, 1972, 30 (02) :195-&
[6]   Velocity fluctuations in forced Burgers turbulence [J].
Bouchaud, JP ;
Mezard, M .
PHYSICAL REVIEW E, 1996, 54 (05) :5116-5121
[7]  
Burgers J. M., 1948, Advances in Ap-plied Mechanics, P171, DOI [10.1016/S0065-2156(08)70100-5, DOI 10.1016/S0065-2156(08)70100-5]
[8]  
Burgers J.M., 1974, NONLINEAR DIFFUSION, DOI [DOI 10.1007/978-94-010-1745-9, 10.1007/978-94-010-1745-9]
[9]  
Chandrasekhar S., 1981, Hydrodynamic and Hydromagnetic Stability, DOI DOI 10.1146/annurev.fluid.36.050802.122015
[10]   KOLMOGOROV TURBULENCE IN A RANDOM-FORCE-DRIVEN BURGERS-EQUATION [J].
CHEKHLOV, A ;
YAKHOT, V .
PHYSICAL REVIEW E, 1995, 51 (04) :R2739-R2742