PredMaX: Predictive maintenance with explainable deep convolutional autoencoders

被引:16
作者
Hajgato, Gergely [1 ]
Weber, Richard [2 ]
Szilagyi, Botond [3 ]
Tothpal, Balazs [4 ]
Gyires-Toth, Balint [1 ]
Hos, Csaba [2 ]
机构
[1] Budapest Univ Technol & Econ, Fac Elect Engn & Informat, Dept Telecommun & Media Informat, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Hydrodynam Syst, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, Fac Chem Technol & Biotechnol, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] PETROLSZOLG Maintenance & Serv Provider Ltd, Budapest, Hungary
关键词
Explainable neural networks; Explainable artificial intelligence; Predictive maintenance; Unsupervised learning; Automatic cluster identification; Deep convolutional autoencoder; FAULT; DIAGNOSIS; FRAMEWORK; DEFECT;
D O I
10.1016/j.aei.2022.101778
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel data exploration framework (PredMaX) for predictive maintenance is introduced in the present paper. PredMaX offers automatic time period clustering and efficient identification of sensitive machine parts by exploiting hidden knowledge in high-dimensional, unlabeled temporal data. Condition monitoring systems often provide such data, which is further analyzed by human experts or used for training predictive models.PredMaX reduces data dimensionality in two steps: An explainable deep convolutional autoencoder is applied on the data first, followed by principal component analysis. The automatic clustering is performed in the latent space of the autoencoder, ensuring higher accuracy than the clustering in the space of principal components. If clusters of normal and abnormal operation are known, the reasoning module is able to reveal the measurement channels that contributed the most to the latent representation moving from normal to abnormal operation.Beyond the detailed presentation of the PredMaX approach, the paper presents the case study of identifying the most important signals that can be used for predicting oil degradation in an industrial gearbox. The case study is performed on a data-driven basis with minimal human assistance and without preliminary knowledge of the machine.
引用
收藏
页数:9
相关论文
共 49 条
  • [41] Ten Zeldam S., 2018, PHM SOC EUR C, P1, DOI DOI 10.36001/PHME.2018.V4I1.432
  • [42] Physically Interpretable Neural Networks for the Geosciences: Applications to Earth System Variability
    Toms, Benjamin A.
    Barnes, Elizabeth A.
    Ebert-Uphoff, Imme
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (09)
  • [43] PlayMolecule Glimpse: Understanding Protein-Ligand Property Predictions with Interpretable Neural Networks
    Varela-Rial, Alejandro
    Maryanow, Iain
    Majewski, Maciej
    Doerr, Stefan
    Schapin, Nikolai
    Jimenez-Luna, Jose
    De Fabritiis, Gianni
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (02) : 225 - 231
  • [44] Vaswani A, 2017, ADV NEUR IN, V30
  • [45] Vinyals O., 2015, P ADV NEUR INF PROC, V28, P1
  • [46] Intelligent fault diagnosis approach with unsupervised feature learning by stacked denoising autoencoder
    Xia, Min
    Li, Teng
    Liu, Lizhi
    Xu, Lin
    de Silva, Clarence W.
    [J]. IET SCIENCE MEASUREMENT & TECHNOLOGY, 2017, 11 (06) : 687 - 695
  • [47] Xu K, 2015, PR MACH LEARN RES, V37, P2048
  • [48] Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
    Zamprogna, E
    Barolo, M
    Seborg, DE
    [J]. JOURNAL OF PROCESS CONTROL, 2005, 15 (01) : 39 - 52
  • [49] Predictive maintenance in the Industry 4.0: A systematic literature review
    Zonta, Tiago
    da Costa, Cristiano Andre
    Righi, Rodrigo da Rosa
    de Lima, Miromar Jose
    da Trindade, Eduardo Silveira
    Li, Guann Pyng
    [J]. COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 150 (150)