Sewer pipe, wire, epoxy, and finger tapping: The start of fMRI at the Medical College of Wisconsin

被引:4
作者
Bandettini, Peter A. [1 ,2 ]
机构
[1] NIMH, Sect Funct Imaging Methods, Bethesda, MD 20892 USA
[2] NIMH, Funct MRI Core Facil, Bethesda, MD USA
关键词
HUMAN VISUAL-CORTEX; NUCLEAR MAGNETIC-RESONANCE; HUMAN BRAIN ACTIVATION; FUNCTIONAL MRI; SENSORY STIMULATION; HIGH-RESOLUTION; SPIN-ECHO; 1.5; T; BLOOD; TIME;
D O I
10.1016/j.neuroimage.2011.10.044
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In 1991, the Biophysics Research Institute at the Medical College of Wisconsin was among the first groups to develop functional Magnetic Resonance Imaging (fMRI). Our story is unique on a few levels: We didn't have knowledge of the ability to image human brain activation with MRI using blood oxygenation dependent (BOLD) contrast until early August of 1991 when we attended the Society for Magnetic Resonance in Medicine (SMRM) meeting in San Francisco, yet we produced our first BOLD-based maps of motor cortex activation about a month later. The effort started with two graduate students, Eric Wong and myself. Only a few days prior to that extremely important SMRM meeting, we had developed human echo planar imaging (EPI) capability in-house. Wong designed, built, and interfaced a head gradient coil made out of sewer pipe, wire, and epoxy to a standard GE 1.5 T MRI scanner. Also, a few months prior to building this human head gradient coil he developed the EPI pulse sequences and image reconstruction. All of these efforts were towards a different goal for demonstration of Wong's novel approach to perfusion imaging in the human brain. Following SMRM, where a plenary lecture by Tom Brady from MGH opened our eyes to human brain activation imaging using BOLD contrast, and where we learned that EPI was extremely helpful if not critical to its success, we worked quickly to achieve our first results on September 14, 1991. The story is also unique in that Jim Hyde had set up the Biophysics Research Institute to be optimal for just this type of rapidly advancing basic technology research. It was well equipped for hardware development, had open and dynamic collaborative relationships with other departments, hospitals on campus, and GE, and had a relatively flat hierarchy and relaxed, flexible, collegial atmosphere internally. Since these first brain activation results, MCW Biophysics has continued to be at the forefront of functional MRI innovation, having helped to pioneer real time fMRI, high-resolution fMRI, and functional connectivity mapping. Published by Elsevier Inc.
引用
收藏
页码:620 / 631
页数:12
相关论文
共 51 条
[1]  
Bandettini PA, 1997, NMR BIOMED, V10, P197, DOI 10.1002/(SICI)1099-1492(199706/08)10:4/5<197::AID-NBM466>3.0.CO
[2]  
2-S
[3]   Functional MRI of brain activation induced by scanner acoustic noise [J].
Bandettini, PA ;
Jesmanowicz, A ;
Van Kylen, J ;
Birn, RM ;
Hyde, JS .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (03) :410-416
[4]   TIME COURSE EPI OF HUMAN BRAIN-FUNCTION DURING TASK ACTIVATION [J].
BANDETTINI, PA ;
WONG, EC ;
HINKS, RS ;
TIKOFSKY, RS ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1992, 25 (02) :390-397
[5]   SPIN-ECHO AND GRADIENT-ECHO EPI OF HUMAN BRAIN ACTIVATION USING BOLD CONTRAST - A COMPARATIVE-STUDY AT 1.5 T [J].
BANDETTINI, PA ;
WONG, EC ;
JESMANOWICZ, A ;
HINKS, RS ;
HYDE, JS .
NMR IN BIOMEDICINE, 1994, 7 (1-2) :12-20
[6]   EFFECTS OF BIOPHYSICAL AND PHYSIOLOGICAL-PARAMETERS ON BRAIN ACTIVATION-INDUCED R(2)ASTERISK AND R(2) CHANGES - SIMULATIONS USING A DETERMINISTIC DIFFUSION-MODEL [J].
BANDETTINI, PA ;
WONG, EC .
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1995, 6 (2-3) :133-152
[7]   PROCESSING STRATEGIES FOR TIME-COURSE DATA SETS IN FUNCTIONAL MRI OF THE HUMAN BRAIN [J].
BANDETTINI, PA ;
JESMANOWICZ, A ;
WONG, EC ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1993, 30 (02) :161-173
[8]  
Belliveau J.W., 1991, FUNCTIONAL MAPPING H, P115
[9]   FUNCTIONAL MAPPING OF THE HUMAN VISUAL-CORTEX BY MAGNETIC-RESONANCE-IMAGING [J].
BELLIVEAU, JW ;
KENNEDY, DN ;
MCKINSTRY, RC ;
BUCHBINDER, BR ;
WEISSKOFF, RM ;
COHEN, MS ;
VEVEA, JM ;
BRADY, TJ ;
ROSEN, BR .
SCIENCE, 1991, 254 (5032) :716-719
[10]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541