SIERPINSKI CURVE JULIA SETS FOR QUADRATIC RATIONAL MAPS

被引:10
作者
Devaney, Robert L.
Fagella, Nuria
Garijo, Antonio
Jarque, Xavier [1 ]
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
关键词
Iteration; Fatou and Julia sets; quadratic rational maps; Sierpinski curves; PARAMETER SPACE; COMPONENTS;
D O I
10.5186/aasfm.2014.3903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpinski curve.
引用
收藏
页码:3 / 22
页数:20
相关论文
共 50 条
  • [21] Mandelbrot sets in diversifying markets with Julia sets
    Moreno, Christian
    Manzanarez, Cesar
    REVISTA ECORFAN, 2010, 1 (02): : 158 - 168
  • [22] Topological complexity of Julia sets
    Jianyong Qiao
    Science in China Series A: Mathematics, 1997, 40 : 1158 - 1165
  • [23] Julia Sets in Parameter Spaces
    X. Buff
    C. Henriksen
    Communications in Mathematical Physics, 2001, 220 : 333 - 375
  • [24] Topological complexity of Julia sets
    乔建永
    Science China Mathematics, 1997, (11) : 1158 - 1165
  • [25] Graphical exploration of the connectivity sets of alternated Julia sets
    Danca, Marius-F.
    Bourke, Paul
    Romera, Miguel
    NONLINEAR DYNAMICS, 2013, 73 (1-2) : 1155 - 1163
  • [26] ALTERNATED JULIA SETS AND CONNECTIVITY PROPERTIES
    Danca, Marius-F.
    Romera, M.
    Pastor, G.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (06): : 2123 - 2129
  • [27] Orthogonal Polynomials on Generalized Julia Sets
    Alpan, Gokalp
    Goncharov, Alexander
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (08) : 1845 - 1864
  • [28] On Julia sets concerning phase transitions
    Qiao, JY
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (03): : 415 - 431
  • [29] On Julia sets concerning phase transitions
    Jianyong Qiao
    Science in China Series A: Mathematics, 2003, 46 (3): : 415 - 431
  • [30] On the connectivity of the Julia sets of meromorphic functions
    Baranski, Krzysztof
    Fagella, Nuria
    Jarque, Xavier
    Karpinska, Boguslawa
    INVENTIONES MATHEMATICAE, 2014, 198 (03) : 591 - 636