The s-energy of spherical designs on S2

被引:7
|
作者
Hesse, Kerstin [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Acceleration of convergence; Energy; Equal weight cubature; Equal weight numerical integration; Orthogonal polynomials; Sphere; Spherical design; Well separated point sets on sphere; MINIMAL DISCRETE ENERGY; ASYMPTOTICS; DISTANCES; CUBATURE; SURFACE;
D O I
10.1007/s10444-007-9057-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the s-energy of (finite and infinite) well separated sequences of spherical designs on the unit sphere S-2. A spherical n-design is a point set on S-2 that gives rise to an equal weight cubature rule which is exact for all spherical polynomials of degree <= n. The s-energy E-s(X) of a point set X = {x(1),..., x(m)} subset of S-2 of m distinct points is the sum of the potential parallel to x(i) - x(j) parallel to(-s) for all pairs of distinct points x(i), x(j) epsilon X. A sequence Xi = {X-m} of point sets X-m subset of S-2, where Xm has the cardinality card (X-m) = m, is well separated if arccos(x(i) center dot x(j)) >= lambda/root m for each pair of distinct points x(i), x(j) epsilon X-m, where the constant lambda is independent of m and X-m. For all s > 0, we derive upper bounds in terms of orders of n and m(n) of the s-energy Es(X-m(n)) for well separated sequences Xi = {X-m(n)} of spherical n-designs X-m(n) with card (X-m(n)) = m(n).
引用
收藏
页码:37 / 59
页数:23
相关论文
共 50 条
  • [21] Automatic Identification of S1 and S2 Heart Sounds Using Simultaneous PCG and PPG Recordings
    Babu, K. Ajay
    Ramkumar, Barathram
    Manikandan, M. Sabarimalai
    IEEE SENSORS JOURNAL, 2018, 18 (22) : 9430 - 9440
  • [22] GROUP-QUANTIZATION OF NONLINEAR SIGMA MODELS: PARTICLE ON S2 REVISITED
    Aldaya, V.
    Calixto, M.
    Guerrero, J.
    Lopez-Ruiz, F. F.
    REPORTS ON MATHEMATICAL PHYSICS, 2009, 64 (1-2) : 49 - 58
  • [23] Limit time optimal synthesis for a control-affine system on S2
    Mason, P.
    Salmoni, R.
    Boscain, U.
    Chitour, Y.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (01) : 111 - 143
  • [24] Estimating the Parameters of Extended Gravity Theories with the Schwarzschild Precession of S2 Star
    Borka, Dusko
    Borka Jovanovic, Vesna
    Capozziello, Salvatore
    Zakharov, Alexander F.
    Jovanovic, Predrag
    UNIVERSE, 2021, 7 (11)
  • [25] Singularity formation for the two-dimensional harmonic map flow into S2
    Davila, Juan
    del Pino, Manuel
    Wei, Juncheng
    INVENTIONES MATHEMATICAE, 2020, 219 (02) : 345 - 466
  • [26] Rotating 2N-vortex solutions to the Gross-Pitaevskii equation on S2
    Gelantalis, Michael
    Sternberg, Peter
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [27] Potential energy curves, turning points, Franck-Condon factors and r-centroids for the astrophysically interesting S2 molecule
    da Silva, Ramon S.
    Ballester, Maikel Y.
    ASTROPHYSICS AND SPACE SCIENCE, 2019, 364 (10)
  • [28] ON INVERSE OF A REGULAR SURFACE WITH RESPECT TO THE UNIT SPHERE S2 IN E3
    Tul, Sidika
    Bayar, Feray
    Sarioglugil, Ayhan
    JOURNAL OF SCIENCE AND ARTS, 2021, (01) : 171 - 198
  • [29] THE RADIUS OF VANISHING BUBBLES IN EQUIVARIANT HARMONIC MAP FLOW FROM D2 TO S2
    Angenent, S. B.
    Hulshof, J.
    Matano, H.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) : 1121 - 1137
  • [30] Evaluation of a global total water level model in the presence of radiational S2 tide
    Wang, Pengcheng
    Bernier, Natacha B.
    Thompson, Keith R.
    Kodaira, Tsubasa
    OCEAN MODELLING, 2021, 168