Complexity of sequences and dynamical systems

被引:99
作者
Ferenczi, S [1 ]
机构
[1] CNRS, Inst Math Luminy, UPR 9016, F-13288 Marseille 9, France
关键词
D O I
10.1016/S0012-365X(98)00400-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is a survey of recent results on the notion of symbolic complexity, which counts the number of factors of an infinite sequence, particularly in view of its relations with dynamical systems. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:145 / 154
页数:10
相关论文
共 32 条
[1]  
ALESSANDRI P, 1996, THESIS U AIX MARSEIL, P2
[2]  
Allouche J.-P., 1994, B BELG MATH SOC, V1, P133
[3]  
ARNOUX P, 1994, B SOC MATH FR, V122, P1
[4]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[5]  
BARYSHNIKOV Y, 1995, COMMUN MATH PHYS, V174, P43, DOI 10.1007/BF02099463
[6]  
BLANC G, 1989, INFORM THEORI APPL R, V23, P195
[7]   Language complexity of rotations and Sturmian sequences [J].
Blanchard, F ;
Kurka, P .
THEORETICAL COMPUTER SCIENCE, 1998, 209 (1-2) :179-193
[8]  
BLANCHARD F, 1998, TOPOLOGICAL COMPLEXI
[9]  
BOSHERNITZAN M, 1985, J ANAL MATH, V44, P77
[10]   A CONDITION FOR UNIQUE ERGODICITY OF MINIMAL SYMBOLIC FLOWS [J].
BOSHERNITZAN, MD .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 :425-428