On the Coderivative of the Projection Operator onto the Second-order Cone

被引:62
作者
Outrata, Jiri V. [1 ]
Sun, Defeng [2 ,3 ]
机构
[1] Acad Sci Czech Republ, Inst Informat Theory & Automat, CR-18208 Prague, Czech Republic
[2] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
[3] Natl Univ Singapore, Risk Management Inst, Singapore 117548, Singapore
来源
SET-VALUED ANALYSIS | 2008年 / 16卷 / 7-8期
关键词
Second-order cone; Projection; Limiting coderivative; Aubin property;
D O I
10.1007/s11228-008-0092-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The limiting (Mordukhovich) coderivative of the metric projection onto the second-order cone R-n is computed. This result is used to obtain a sufficient condition for the Aubin property of the solution map of a parameterized second-order cone complementarity problem and to derive necessary optimality conditions for a mathematical program with a second-order cone complementarity problem among the constraints.
引用
收藏
页码:999 / 1014
页数:16
相关论文
共 21 条
[1]   LIPSCHITZ BEHAVIOR OF SOLUTIONS TO CONVEX MINIMIZATION PROBLEMS [J].
AUBIN, JP .
MATHEMATICS OF OPERATIONS RESEARCH, 1984, 9 (01) :87-111
[2]   Analysis of nonsmooth vector-valued functions associated with second-order cones [J].
Chen, JS ;
Chen, X ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2004, 101 (01) :95-117
[3]   Complementarity functions and numerical experiments on some smoothing newton methods for second-order-cone complementarity problems [J].
Chen, XD ;
Sun, D ;
Sun, J .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2003, 25 (1-3) :39-56
[4]  
Clarke FH, 1983, OPTIMIZATION NONSMOO
[5]  
FARAUT U, 1994, OXFORD MATH MONOGRAP
[6]   An implementable active-set algorithm for computing a B-stationary point of a mathematical program with linear complementarity constraints [J].
Fukushima, M ;
Tseng, P .
SIAM JOURNAL ON OPTIMIZATION, 2002, 12 (03) :724-739
[7]   Mixed finite element approximation of 3D contact problems with given friction: Error analysis and numerical realization [J].
Haslinger, J ;
Sassi, T .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (03) :563-578
[8]  
KANZOW C, 2006, 2006005 KYOT U DEP A
[9]  
Koecher M, 1999, Lecture Notes in Math., V1710
[10]   MONOTONE-FUNCTIONS ON FORMALLY REAL JORDAN ALGEBRAS [J].
KORANYI, A .
MATHEMATISCHE ANNALEN, 1984, 269 (01) :73-76