On the logic foundation of fuzzy reasoning

被引:173
作者
Wang, GJ [1 ]
机构
[1] Shaanxi Normal Univ, Inst Math, Xian 710062, Peoples R China
[2] SW Jiaotong Univ, Dept Appl Math, Chengdu 610031, Peoples R China
关键词
D O I
10.1016/S0020-0255(98)10103-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy reasoning and fuzzy formal deduction theory are two closely related subjects and each of them has been investigated by many researchers. Unfortunately, it seems that the two branches have not been successfully connected. The aim of this paper is to establish a so-called quasi-propositional deductive system syntactically as well as semantically, and then set a logic foundation for developing the theory of fuzzy reasoning therefrom. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:47 / 88
页数:42
相关论文
共 11 条
[1]  
CHEN YY, 1993, FUZZY CONTROL TECHNI
[2]   FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS [J].
DUBOIS, D ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :143-202
[3]   FUZZY-SETS IN APPROXIMATE REASONING .2. LOGICAL APPROACHES [J].
DUBOIS, D ;
LANG, J ;
PRADE, H .
FUZZY SETS AND SYSTEMS, 1991, 40 (01) :203-244
[4]  
HAMILTON A. G., 1978, LOGIC MATH
[5]   FUZZY LOGIC .1. MANY-VALUED RULES OF INFERENCE [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (01) :45-52
[6]   FUZZY LOGIC .2. ENRICHED RESIDUATED LATTICES AND SEMANTICS OF PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (02) :119-134
[7]   FUZZY LOGIC .3. SEMANTICAL COMPLETENESS OF SOME MANY-VALUED PROPOSITIONAL CALCULI [J].
PAVELKA, J .
ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1979, 25 (05) :447-464
[8]  
ZADEH L, 1994, IEEE EXPERT AUG, P43
[9]   QUANTITATIVE FUZZY SEMANTICS [J].
ZADEH, LA .
INFORMATION SCIENCES, 1971, 3 (02) :159-+
[10]  
ZADEH LA, 1975, INFORM SCIENCES, V8, P199, DOI [10.1016/0020-0255(75)90036-5, 10.1016/0020-0255(75)90046-8]