PROJECTIVE TORIC VARIETIES AS FINE MODULI SPACES OF QUIVER REPRESENTATIONS

被引:0
作者
Craw, Alastair [1 ]
Smith, Gregory G. [2 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves that every projective toric variety is the fine moduli space for stable representations of an appropriate bound quiver. To accomplish this, we study the quiver Q with relations R corresponding to the finite-dimensional algebra End (circle plus(r)(i=0) L-i) where L := (O-X, L-1, . . . , L-r) is a list of line bundles on a projective toric variety X. The quiver Q defines a smooth projective toric variety, called the multilinear series |L|, and a map X -> |L|. We provide necessary and sufficient conditions for the induced map to be a closed embedding. As a consequence, we obtain a new geometric quotient construction of projective toric varieties. Under slightly stronger hypotheses on L, the closed embedding identifies X with the fine moduli space of stable representations for the bound quiver (Q, R).
引用
收藏
页码:1509 / 1534
页数:26
相关论文
共 50 条
[41]   Some results on the moduli spaces of quiver bundles [J].
Alvarez-Consul, Luis .
GEOMETRIAE DEDICATA, 2009, 139 (01) :99-120
[42]   SHEAVES ON ALE SPACES AND QUIVER VARIETIES [J].
Nakajima, Hiraku .
MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (04) :699-722
[43]   Some results on the moduli spaces of quiver bundles [J].
Luis Álvarez-Cónsul .
Geometriae Dedicata, 2009, 139
[44]   Toric Structures on Bundles of Projective Spaces [J].
Fanoe, Andrew .
JOURNAL OF SYMPLECTIC GEOMETRY, 2014, 12 (04) :685-724
[45]   Segre classes on smooth projective toric varieties [J].
Moe, Torgunn Karoline ;
Qviller, Nikolay .
MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (1-2) :529-548
[46]   Quasi-projective reduction of toric varieties [J].
A. A'Campo–Neuen ;
J. Hausen .
Mathematische Zeitschrift, 2000, 233 :697-708
[47]   Several diophantian aspects of projective toric varieties [J].
Philippon, Patrice ;
Sombra, Martin .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :295-+
[48]   On generators of ideals defining projective toric varieties [J].
Ogata, S ;
Nakagawa, K .
MANUSCRIPTA MATHEMATICA, 2002, 108 (01) :33-42
[49]   SIMPLICIAL WEDGE COMPLEXES AND PROJECTIVE TORIC VARIETIES [J].
Kim, Jin Hong .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2017, 54 (01) :265-276
[50]   RATIONAL INTERSECTION COHOMOLOGY OF PROJECTIVE TORIC VARIETIES [J].
FIESELER, KH .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 413 :88-98