PROJECTIVE TORIC VARIETIES AS FINE MODULI SPACES OF QUIVER REPRESENTATIONS

被引:0
作者
Craw, Alastair [1 ]
Smith, Gregory G. [2 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[2] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves that every projective toric variety is the fine moduli space for stable representations of an appropriate bound quiver. To accomplish this, we study the quiver Q with relations R corresponding to the finite-dimensional algebra End (circle plus(r)(i=0) L-i) where L := (O-X, L-1, . . . , L-r) is a list of line bundles on a projective toric variety X. The quiver Q defines a smooth projective toric variety, called the multilinear series |L|, and a map X -> |L|. We provide necessary and sufficient conditions for the induced map to be a closed embedding. As a consequence, we obtain a new geometric quotient construction of projective toric varieties. Under slightly stronger hypotheses on L, the closed embedding identifies X with the fine moduli space of stable representations for the bound quiver (Q, R).
引用
收藏
页码:1509 / 1534
页数:26
相关论文
共 50 条
[21]   Branes and moduli spaces of Higgs bundles on smooth projective varieties [J].
Biswas, Indranil ;
Heller, Sebastian ;
Schaposnik, Laura P. .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2021, 8 (03)
[22]   Branes and moduli spaces of Higgs bundles on smooth projective varieties [J].
Indranil Biswas ;
Sebastian Heller ;
Laura P. Schaposnik .
Research in the Mathematical Sciences, 2021, 8
[23]   LOCALIZATION IN QUIVER MODULI SPACES [J].
Weist, Thorsten .
REPRESENTATION THEORY, 2013, 17 :382-425
[24]   The Tutte polynomial and toric Nakajima quiver varieties [J].
Abdelgadir, Tarig ;
Mellit, Anton ;
Villegas, Fernando Rodriguez .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (05) :1323-1339
[25]   Moduli spaces of toric manifolds [J].
Á. Pelayo ;
A. R. Pires ;
T. S. Ratiu ;
S. Sabatini .
Geometriae Dedicata, 2014, 169 :323-341
[26]   Moduli spaces of toric manifolds [J].
Pelayo, A. ;
Pires, A. R. ;
Ratiu, T. S. ;
Sabatini, S. .
GEOMETRIAE DEDICATA, 2014, 169 (01) :323-341
[27]   ON DEFORMATION SPACES OF TORIC SINGULARITIES AND ON SINGULARITIES OF K-MODULI OF FANO VARIETIES [J].
Petracci, Andrea .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (08) :5617-5643
[28]   Logarithmic stable toric varieties and their moduli [J].
Ascher, Kenneth ;
Malcho, Samouil .
ALGEBRAIC GEOMETRY, 2016, 3 (03) :296-319
[29]   Singularities of moduli spaces of sheaves on K3 surfaces and Nakajima quiver varieties [J].
Arbarello, E. ;
Sacca, G. .
ADVANCES IN MATHEMATICS, 2018, 329 :649-703
[30]   Moduli spaces of framed sheaves and quiver varieties (vol 118, pg 20, 2017) [J].
Bartocci, Claudio ;
Lanza, Valeriano ;
Rava, Claudio L. S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 :176-179