Hierarchy of chaotic maps with an invariant measure and their compositions

被引:17
作者
Jafarizadeh, MA [1 ]
Behnia, S
机构
[1] Tabriz Univ, Dept Theoret Phys & Astrophys, Tabriz 51664, Iran
[2] Inst Studies Theoret Phys & Math, Tehran 193951795, Iran
[3] Pure & Appl Sci Res Ctr, Tabriz 51664, Iran
[4] IAU, Dept Phys, Orumiyeh, Iran
关键词
D O I
10.2991/jnmp.2002.9.1.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a hierarchy of many-parameter families of maps of the interval [0, 1] with an invariant measure and using the measure, we calculate Kolmogorov Sinai entropy of these maps analytically. In contrary to the usual one-dimensional maps these maps do not possess period doubling or period-n-tupling cascade bifurcation to chaos, but they have single fixed point attractor at certain region of parameters space, where they bifurcate directly to chaos without having period-n-tupling scenario exactly at certain values of the parameters.
引用
收藏
页码:26 / 41
页数:16
相关论文
共 12 条
[1]   Random perturbations of chaotic dynamical systems: stability of the spectrum [J].
Blank, M ;
Keller, G .
NONLINEARITY, 1998, 11 (05) :1351-1364
[2]  
Cornfeld I. P., 1982, Ergodic Theory
[3]  
DEVANCY L, 1982, INTRO CHAOTIC DYNAMI
[4]  
Dorfman J. R., 1999, INTRO CHAOS NONEQUIL
[5]  
Froyland G., 1997, P 1997 INT S NONL TH, V2, P1129
[6]  
Froyland G., 1995, RANDOM COMPUT DYN, V3, P251
[8]   INTERMITTENT TRANSITION TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
POMEAU, Y ;
MANNEVILLE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :189-197
[9]   An analytical construction of the SRB measures for Baker-type maps [J].
Tasaki, S ;
Gilbert, T ;
Dorfman, JR .
CHAOS, 1998, 8 (02) :424-443
[10]   ERGODIC PROPERTIES OF PIECEWISE-LINEAR MAPS ON FRACTAL REPELLERS [J].
TASAKI, S ;
SUCHANECKI, Z ;
ANTONIOU, I .
PHYSICS LETTERS A, 1993, 179 (02) :103-110