On the fractional p-Laplacian equations with weight and general datum

被引:36
作者
Abdellaoui, Boumediene [1 ]
Attar, Ahmed [1 ]
Bentifour, Rachid [1 ]
机构
[1] Univ Abou Bakr Belkaid, Dept Math, Lab Anal Nonlineaire & Math Appl, Tilimsen 13000, Tlemcen, Algeria
关键词
Weighted fractional Sobolev spaces; nonlocal problems; entropy solution; ELLIPTIC-EQUATIONS; INEQUALITIES; EXISTENCE;
D O I
10.1515/anona-2016-0072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the following problem: {Delta)(s)(p,beta)u = f(x, u) in Omega, u = 0 in R-N \ Omega, where Omega is a smooth bounded domain of R-N containing the origin, (-Delta)(s)(p,beta)u(x) := PV (RN)integral vertical bar u(x) - u(y)vertical bar(p-2) (u(x) - u(y))/vertical bar x - y vertical bar(N+ps) dy/vertical bar x vertical bar(beta)vertical bar y vertical bar(beta) with 0 <= beta < N-ps/2, 1 < p < N, s is an element of (0, 1), and ps < N. The main purpose of this work is to prove the existence of a weak solution under some hypotheses on f. In particular, we will consider two cases: (i) f(x, sigma) = f(x); in this case we prove the existence of a weak solution, that is, in a suitable weighted fractional Sobolev space for all f is an element of L-1(Omega). In addition, if f >= 0, we show that the problem above has a unique entropy positive solution. (ii) f(x, sigma) = lambda sigma(q) + g(x), sigma >= 0; in this case, according to the values of lambda and q, we get the largest class of data g for which the problem above has a positive solution.
引用
收藏
页码:144 / 174
页数:31
相关论文
共 24 条
[1]   On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities [J].
Abdellaoui, B ;
Peral, I .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (04) :539-566
[2]  
Abdellaoui B., CAFFARELLI KOH UNPUB
[3]   The effect of the Hardy potential in some Calderon-Zygmund properties for the fractional Laplacian [J].
Abdellaoui, Boumediene ;
Medina, Maria ;
Peral, Ireneo ;
Primo, Ana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (11) :8160-8206
[4]   A remark on the fractional Hardy inequality with a remainder term [J].
Abdellaoui, Boumediene ;
Peral, Ireneo ;
Primo, Ana .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (04) :299-303
[5]  
Adams R. A., 1975, SOBOLEV SPACES
[6]   Renormalized solutions of the fractional Laplace equation [J].
Alibaud, Nathael ;
Andreianov, Boris ;
Bendahmane, Mostafa .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) :759-762
[7]  
[Anonymous], 1995, ANN SCUOLA NORM-SCI
[8]  
[Anonymous], 1965, ANN I FOURIER, DOI DOI 10.5802/AIF.204
[9]   Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data [J].
Boccardo, L ;
Gallouet, T ;
Orsina, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (05) :539-551
[10]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223