Explicit bounds for split reductions of simple abelian varieties

被引:8
作者
Achter, Jeffrey D. [1 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2012年 / 24卷 / 01期
关键词
L-ADIC REPRESENTATIONS; CONJUGACY CLASSES; NUMBER; FAMILIES;
D O I
10.5802/jtnb.787
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X/K be an absolutely simple abelian variety over a number field; we study whether the reductions X-p tend to be simple, too. We show that if End(X) is a definite quaternion algebra, then the reduction X-p is geometrically isogenous to the self-product of an absolutely simple abelian variety for p in a set of positive density, while if X is of Mumford type, then X-p is simple for almost all p. For a large class of abelian varieties with commutative absolute endomorphism ring, we give an explicit upper bound for the growth of the set of primes of non-simple reduction.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 23 条
[1]  
Achter JD, 2009, MATH RES LETT, V16, P199
[2]   ON THE IMAGE OF GALOIS l-ADIC REPRESENTATIONS FOR ABELIAN VARIETIES OF TYPE III [J].
Banaszak, Grzegorz ;
Gajda, Wojciech ;
Krason, Piotr .
TOHOKU MATHEMATICAL JOURNAL, 2010, 62 (02) :163-189
[3]   A note on the existence of absolutely simple Jacobians [J].
Chai, CL ;
Oort, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 155 (2-3) :115-120
[4]   The generic irreducibility of the numerator of the zeta function in a family of curves with large monodromy [J].
Chavdarov, N .
DUKE MATHEMATICAL JOURNAL, 1997, 87 (01) :151-180
[5]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[6]   NUMBER CONJUGACY CLASSES IN FINITE GROUP [J].
GALLAGHER, PX .
MATHEMATISCHE ZEITSCHRIFT, 1970, 118 (03) :175-+
[7]  
Katz NM, 2012, NUMBER THEORY, ANALYSIS AND GEOMETRY, P321, DOI 10.1007/978-1-4614-1260-1_15
[8]  
Kowalski E., 2008, Cambridge Tracts in Math., V175
[9]   Maximality of Galois actions for compatible systems [J].
Larsen, M .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (03) :601-630
[10]   ABELIAN-VARIETIES, L-ADIC REPRESENTATIONS, AND L-INDEPENDENCE [J].
LARSEN, M ;
PINK, R .
MATHEMATISCHE ANNALEN, 1995, 302 (03) :561-579