Assembly and functionality of the ribosome with tethered subunits

被引:36
作者
Aleksashin, Nikolay A. [1 ]
Leppik, Margus [2 ]
Hockenberry, Adam J. [3 ,4 ,5 ]
Klepacki, Dorota [1 ]
Vazquez-Laslop, Nora [1 ]
Jewett, Michael C. [3 ,4 ]
Remme, Jaanus [2 ]
Mankin, Alexander S. [1 ]
机构
[1] Univ Illinois, Ctr Biomol Sci, Chicago, IL 60607 USA
[2] Univ Tartu, Inst Mol & Cell Biol, Riia 23, EE-51010 Tartu, Estonia
[3] Northwestern Univ, Dept Chem & Biol Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA
[4] Northwestern Univ, Ctr Synthet Biol, 2145 Sheridan Rd, Evanston, IL 60208 USA
[5] Univ Texas Austin, Dept Integrat Biol, Inst Cellular & Mol Biol, 2500 Speedway, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
ESCHERICHIA-COLI; BACTERIAL RIBOSOME; TRANSFER-RNA; TRANSLATION; NUCLEOTIDES; METHYLATION; BIOGENESIS; PLATFORM; REVEALS; DOMAINS;
D O I
10.1038/s41467-019-08892-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ribo-T is an engineered ribosome whose small and large subunits are tethered together by linking 16S rRNA and 23S rRNA in a single molecule. Although Ribo-T can support cell proliferation in the absence of wild type ribosomes, Ribo-T cells grow slower than those with wild type ribosomes. Here, we show that cell growth defect is likely explained primarily by slow Ribo-T assembly rather than its imperfect functionality. Ribo-T maturation is stalled at a late assembly stage. Several post-transcriptional rRNA modifications and some ribosomal proteins are underrepresented in the accumulated assembly intermediates and rRNA ends are incompletely trimmed. Ribosome profiling of Ribo-T cells shows no defects in translation elongation but reveals somewhat higher occupancy by Ribo-T of the start codons and to a lesser extent stop codons, suggesting that subunit tethering mildly affects the initiation and termination stages of translation. Understanding limitations of Ribo-T system offers ways for its future development.
引用
收藏
页数:13
相关论文
共 62 条
[1]   Single methylation of 23S rRNA triggers late steps of 50S ribosomal subunit assembly [J].
Arai, Taiga ;
Ishiguro, Kensuke ;
Kimura, Satoshi ;
Sakaguchi, Yuriko ;
Suzuki, Takeo ;
Suzuki, Tsutomu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (34) :E4707-E4716
[2]   Next-generation genetic code expansion [J].
Arranz-Gibertt, Pol ;
Vanderschurent, Koen ;
Isaacs, Farren J. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2018, 46 :203-211
[3]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[4]   Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family [J].
Basturea, GN ;
Rudd, KE ;
Deutscher, MP .
RNA, 2006, 12 (03) :426-434
[5]   Selective ribosome profiling as a tool for studying the interaction of chaperones and targeting factors with nascent polypeptide chains and ribosomes [J].
Becker, Annemarie H. ;
Oh, Eugene ;
Weissman, Jonathan S. ;
Kramer, Guenter ;
Bukau, Bernd .
NATURE PROTOCOLS, 2013, 8 (11) :2212-2239
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[8]  
Bremer H., 1996, ESCHERICHIA COLI SAL, V2, P1553
[9]   Role of GTPases in Bacterial Ribosome Assembly [J].
Britton, Robert A. .
ANNUAL REVIEW OF MICROBIOLOGY, 2009, 63 :155-176
[10]   RNA methylation under heat shock control [J].
Bügl, H ;
Fauman, EB ;
Staker, BL ;
Zheng, FH ;
Kushner, SR ;
Saper, MA ;
Bardwell, JCA ;
Jakob, U .
MOLECULAR CELL, 2000, 6 (02) :349-360