Quantum Cyclic Codes Over Zm

被引:0
作者
Tang, Nianqi [1 ]
Li, Zhuo [1 ]
Xing, Lijuan [1 ]
Zhang, Ming [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Stabilizer codes; Cyclic codes; Bose-Chaudhuri-Hocquenghem (BCH) codes; Reed-Solomon (RS) codes; MDS CODES;
D O I
10.1007/s10773-019-04000-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum codes over finite rings have the advantage of being able to adapt to quantum physical systems with arbitrary order. Furthermore, operations are much easier to execute in finite rings than they are in fields. This paper discusses quantum cyclic codes over the modulo m residue class ring Zm. A connection is established between the stabilizer codes over Zm and the additive codes over an extension ring of Zm that generalizes the well-known relationship between the stabilizer codes over Fq and the additive codes over Fq2. We prove that if the irreducible polynomial is selected according to a simple criterion, the additive codes which are self-orthogonal with respect to the conjugate inner product correspond to the stabilizer codes. The structure of cyclic stabilizer codes is developed, and some simple conditions for finding them are presented. We also define the quantum Bose-Chaudhuri-Hocquenghem (BCH) and quantum Reed-Solomon (RS) codes over Zm. Finally, new quantum cyclic codes over Zm are given.
引用
收藏
页码:1088 / 1107
页数:20
相关论文
共 29 条
[1]   Primitive quantum BCH codes over finite fields [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, :1114-+
[2]   On quantum and classical BCH codes [J].
Aly, Salah A. ;
Klappenecker, Andreas ;
Sarvepalli, Pradeep Kiran .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (03) :1183-1188
[3]  
Artin M., 2011, ALGEBRA
[4]   Quantum codes from cyclic codes over Fq + uFq + vFq + uvFq [J].
Ashraf, Mohammad ;
Mohammad, Ghulam .
QUANTUM INFORMATION PROCESSING, 2016, 15 (10) :4089-4098
[5]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[6]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[7]   Application of Constacyclic Codes to Quantum MDS Codes [J].
Chen, Bocong ;
Ling, San ;
Zhang, Guanghui .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (03) :1474-1484
[8]  
Gao J., 2018, QUANTUM INF PROCESS
[9]   Class of quantum error-correcting codes saturating the quantum Hamming hound [J].
Gottesman, D .
PHYSICAL REVIEW A, 1996, 54 (03) :1862-1868
[10]  
Grassl M., 1999, PROC X INT S THEORET, P207