Assessment of Bias for MRI Diffusion Tensor Imaging Using SIMEX

被引:0
作者
Lauzon, Carolyn B. [1 ,2 ]
Asman, Andrew J. [1 ]
Crainiceanu, Ciprian [3 ]
Caffo, Brian C. [3 ]
Landman, Bennett A. [1 ,2 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Inst Imaging Sci, Nashville, TN 37235 USA
[3] Johns Hopkins Univ Bloomberg Sch Publ Hlth, Dept Biostat, Baltimore, MD 21205 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2011), PT II | 2011年 / 6892卷
关键词
DTI; FA; bias; SIMEX; parameter estimation; bias correction; diffusion; tensor; imaging; NOISE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diffusion Tensor Imaging (DTI) is a Magnetic Resonance Imaging method for measuring water diffusion in vivo. One powerful DTI contrast is fractional anisotropy (FA). FA reflects the strength of water's diffusion directional preference and is a primary metric for neuronal fiber tracking. As with other DTI contrasts, FA measurements are obscured by the well established presence of bias. DTI bias has been challenging to assess because it is a multi-variable problem including SNR, six tensor parameters, and the DTI collection and processing method used. SIMEX is a modern statistical technique that estimates bias by tracking measurement error as a function of added noise. Here, we use SIMEX to assess bias in FA measurements and show the method provides; i) accurate FA bias estimates, ii) representation of FA bias that is data set specific and accessible to non-statisticians, and iii) a first time possibility for incorporation of bias into DTI data analysis.
引用
收藏
页码:107 / +
页数:3
相关论文
共 15 条
  • [1] Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models
    Aja-Fernandez, Santiago
    Tristan-Vega, Antonio
    Alberola-Lopez, Carlos
    [J]. MAGNETIC RESONANCE IMAGING, 2009, 27 (10) : 1397 - 1409
  • [2] Theoretical analysis of the effects of noise on diffusion tensor imaging
    Anderson, AW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (06) : 1174 - 1188
  • [3] Basser PJ, 2000, MAGNET RESON MED, V44, P41, DOI 10.1002/1522-2594(200007)44:1<41::AID-MRM8>3.0.CO
  • [4] 2-O
  • [5] Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn, DOI [10.1201/9781420010138, DOI 10.1201/9781420010138]
  • [6] Cook J., 1994, J AM STAT ASS, V89
  • [7] THE RICIAN DISTRIBUTION OF NOISY MRI DATA
    GUDBJARTSSON, H
    PATZ, S
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (06) : 910 - 914
  • [8] Squashing peanuts and smashing pumpkins: How noise distorts diffusion-weighted MR data
    Jones, DK
    Basser, PJ
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (05) : 979 - 993
  • [9] Landman BA., 2008, MAGN RESON IMAGING
  • [10] Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
    Landman, Bennett A.
    Farrell, Jonathan A. D.
    Jones, Craig K.
    Smith, Seth A.
    Prince, Jerry L.
    Mori, Susumu
    [J]. NEUROIMAGE, 2007, 36 (04) : 1123 - 1138