CO2 Ocean Bistability on Terrestrial Exoplanets

被引:8
作者
Graham, R. J. [1 ]
Lichtenberg, Tim [1 ]
Pierrehumbert, Raymond T. [1 ]
机构
[1] Univ Oxford, Dept Phys, Atmospher Ocean & Planetary Phys, Oxford, England
基金
欧洲研究理事会;
关键词
exoplanets; habitability; carbon cycling; EARTH-LIKE PLANETS; CARBON-DIOXIDE; INFRARED-SPECTRUM; NEGATIVE FEEDBACK; ATMOSPHERIC CO2; PLATE-TECTONICS; CLIMATE; ABSORPTION; DIMERS; SPECTROSCOPY;
D O I
10.1029/2022JE007456
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Cycling of carbon dioxide between the atmosphere and interior of rocky planets can stabilize global climate and enable planetary surface temperatures above freezing over geologic time. However, variations in global carbon budget and unstable feedback cycles between planetary sub-systems may destabilize the climate of rocky exoplanets toward regimes unknown in the Solar System. Here, we perform clear-sky atmospheric radiative transfer and surface weathering simulations to probe the stability of climate equilibria for rocky, ocean-bearing exoplanets at instellations relevant for planetary systems in the outer regions of the circumstellar habitable zone. Our simulations suggest that planets orbiting G- and F-type stars (but not M-type stars) may display bistability between an Earth-like climate state with efficient carbon sequestration and an alternative stable climate equilibrium where CO2 condenses at the surface and forms a blanket of either clathrate hydrate or liquid CO2. At increasing instellation and with ineffective weathering, the latter state oscillates between cool, surface CO2-condensing and hot, non-condensing climates. CO2 bistable climates may emerge early in planetary history and remain stable for billions of years. The carbon dioxide-condensing climates follow an opposite trend in pCO(2) versus instellation compared to the weathering-stabilized planet population, suggesting the possibility of observational discrimination between these distinct climate categories.
引用
收藏
页数:19
相关论文
共 117 条
[11]  
Bonati I., 2021, MON NOT R ASTRON SOC
[12]   Self-preserving ice layers on CO2 clathrate particles: Implications for Enceladus, Pluto, and similar ocean worlds [J].
Bostrom, Mathias ;
Esteso, Victoria ;
Fiedler, Johannes ;
Brevik, Iver ;
Buhmann, Stefan Yoshi ;
Persson, Clas ;
Carretero-Palacios, Sol ;
Parsons, Drew F. ;
Corkery, Robert W. .
ASTRONOMY & ASTROPHYSICS, 2021, 650
[13]   Direct experiments on the ocean disposal of fossil fuel CO2 [J].
Brewer, PG ;
Friederich, C ;
Peltzer, ET ;
Orr, FM .
SCIENCE, 1999, 284 (5416) :943-945
[14]   The Effect of Seafloor Weathering on Planetary Habitability [J].
Chambers, John .
ASTROPHYSICAL JOURNAL, 2020, 896 (02)
[15]   Probing the Capability of Future Direct-imaging Missions to Spectrally Constrain the Frequency of Earth-like Planets [J].
Checlair, Jade H. ;
Villanueva, Geronimo L. ;
Hayworth, Benjamin P. C. ;
Olson, Stephanie L. ;
Komacek, Thaddeus D. ;
Robinson, Tyler D. ;
Popovic, Predrag ;
Yang, Huanzhou ;
Abbot, Dorian S. .
ASTRONOMICAL JOURNAL, 2021, 161 (03)
[16]   Dynamics of Massive Atmospheres [J].
Chemke, Rei ;
Kaspi, Yohai .
ASTROPHYSICAL JOURNAL, 2017, 845 (01)
[17]   THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES [J].
Claire, Mark W. ;
Sheets, John ;
Cohen, Martin ;
Ribas, Ignasi ;
Meadows, Victoria S. ;
Catling, David C. .
ASTROPHYSICAL JOURNAL, 2012, 757 (01)
[18]   The time scale of the silicate weathering negative feedback on atmospheric CO2 [J].
Colbourn, G. ;
Ridgwell, A. ;
Lenton, T. M. .
GLOBAL BIOGEOCHEMICAL CYCLES, 2015, 29 (05) :583-596
[19]   Low-Temperature Alteration of the Seafloor: Impacts on Ocean Chemistry [J].
Coogan, Laurence A. ;
Gillis, Kathryn M. .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 46, 2018, 46 :21-45
[20]   Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation [J].
Coogan, Laurence A. ;
Gillis, Kathryn M. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2013, 14 (06) :1771-1786