Outlier detection in regression models with ARIMA errors using robust estimates

被引:89
作者
Bianco, AM [1 ]
Ben, MG [1 ]
Martínez, EJ [1 ]
Yohai, VJ [1 ]
机构
[1] Univ Buenos Aires, RA-1053 Buenos Aires, DF, Argentina
关键词
time series; additive outlier; innovation outlier; level shifts;
D O I
10.1002/for.768
中图分类号
F [经济];
学科分类号
02 ;
摘要
A diagnostic procedure for detecting additive and innovation outliers as well as level shifts in a regression model with ARIMA errors is introduced. The procedure is based on a robust estimate of the model parameters and on innovation residuals computed by means of robust filtering. A Monte Carlo study shows that, when there is a large proportion of outliers, this procedure is more powerful than the classical methods based on maximum likelihood type estimates and Kalman filtering. Copyright (C) 2001 John Wiley & Sons, Ltd.
引用
收藏
页码:565 / 579
页数:15
相关论文
共 25 条
[1]   OUTLIER DETECTION AND TIME-SERIES MODELING [J].
ABRAHAM, B ;
CHUANG, A .
TECHNOMETRICS, 1989, 31 (02) :241-248
[2]  
ABRAHAM B, 1989, J TIME SER ANAL, V14, P221
[3]  
Bianco A. M., 1996, COMPSTAT. Proceedings in Computational Statistics. 12th Symposium, P27
[4]  
BRUCE AG, 1989, J ROY STAT SOC B MET, V51, P363
[5]   ESTIMATION OF TIME-SERIES PARAMETERS IN THE PRESENCE OF OUTLIERS [J].
CHANG, I ;
TIAO, GC ;
CHEN, C .
TECHNOMETRICS, 1988, 30 (02) :193-204
[6]  
Chang I., 1983, P AM STAT ASS BUS EC, P532
[7]   JOINT ESTIMATION OF MODEL PARAMETERS AND OUTLIER EFFECTS IN TIME-SERIES [J].
CHEN, C ;
LIU, LM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :284-297
[8]   FORECASTING TIME-SERIES WITH OUTLIERS [J].
CHEN, C ;
LIU, LM .
JOURNAL OF FORECASTING, 1993, 12 (01) :13-35
[9]   ROBUST ESTIMATION OF THE 1ST-ORDER AUTOREGRESSIVE PARAMETER [J].
DENBY, L ;
MARTIN, RD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1979, 74 (365) :140-146
[10]  
FOX AJ, 1972, J ROY STAT SOC B, V34, P350