THE TREE PROPERTY AT Nω+1

被引:14
作者
Sinapova, Dima [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
CANONICAL STRUCTURE; SET-THEORY; UNIVERSE;
D O I
10.2178/jsl/1327068703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that given omega many supercompact cardinals, there is a generic extension in which there are no Aronszajn trees at N omega+1. This is an improvement of the large cardinal assumptions. The previous hypothesis was a huge cardinal and a many supercompact cardinals above it, in Magidor-Shelah [7].
引用
收藏
页码:279 / 290
页数:12
相关论文
共 9 条
[1]   Canonical structure in the universe of set theory: part one [J].
Cummings, J ;
Foreman, M ;
Magidor, M .
ANNALS OF PURE AND APPLIED LOGIC, 2004, 129 (1-3) :211-243
[2]   Canonical structure in the universe of set theory: part two [J].
Cummings, James ;
Foreman, Matthew ;
Magidor, Menachem .
ANNALS OF PURE AND APPLIED LOGIC, 2006, 142 (1-3) :55-75
[3]   DIAGONAL PRIKRY EXTENSIONS [J].
Cummings, James ;
Foreman, Matthew .
JOURNAL OF SYMBOLIC LOGIC, 2010, 75 (04) :1383-1402
[4]  
Cummings James, 2001, Journal of Mathematical Logic, V01, P35
[5]   On SCH and the approachability property [J].
Gitik, Moti ;
Sharon, Assaf .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) :311-320
[6]   The tree property at successors of singular cardinals [J].
Magidor, M ;
Shelah, S .
ARCHIVE FOR MATHEMATICAL LOGIC, 1996, 35 (5-6) :385-404
[7]   ARONSZAJN TREES AND FAILURE OF THE SINGULAR CARDINAL HYPOTHESIS [J].
Neeman, Itay .
JOURNAL OF MATHEMATICAL LOGIC, 2009, 9 (01) :139-157
[8]  
Shelah S., 1994, OXFORD LOGIC GUIDES, V29
[9]  
THOMAS JECH, 2003, SET THEORY