Time Compactness Tools for Discretized Evolution Equations and Applications to Degenerate Parabolic PDEs

被引:6
作者
Andreianov, Boris [1 ]
机构
[1] Univ Franche Comte, Phys Mol Lab, CNRS, UMR 6623, F-25030 Besancon, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2 | 2011年 / 4卷
关键词
time translates; Kruzhkov lemma; order-preservation; finite volumes;
D O I
10.1007/978-3-642-20671-9_3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss several techniques for proving compactness of sequences of approximate solutions to discretized evolution PDEs. While the well-known Aubin-Simon kind functional-analytic techniques were recently generalized to the discrete setting by Gallouet and Latche [15], here we discuss direct techniques for estimating the time translates of approximate solutions in the space L-1. One important result is the Kruzhkov time compactness lemma. Further, we describe a specific technique that relies upon the order-preservation property. Motivation comes from studying convergence of finite volume discretizations for various classes of nonlinear degenerate parabolic equations. These and other applications are briefly described.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 17 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
Amann H., 2000, Glas. Mat. Ser., V35, P161
[3]   DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) :1-67
[4]   Well-posedness results for triply nonlinear degenerate parabolic equations [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. ;
Ouaro, S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :277-302
[5]  
Andreianov B., 2011, MATH MODELS IN PRESS
[6]  
Andreianov B., 2011, NETW HET ME IN PRESS
[7]  
ANDREIANOV B, 2011, 3D DDFV DISCRETIZATI, V2
[8]  
Andreianov B., 2011, CONVERGENCE APPROXIM
[9]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[10]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042