Heterostructures of graphene and hBN: Electronic, spin-orbit, and spin relaxation properties from first principles

被引:58
作者
Zollner, Klaus [1 ]
Gmitra, Martin [2 ]
Fabian, Jaroslav [1 ]
机构
[1] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[2] PJ Safarik Univ Kosice, Inst Phys, Kosice 04001, Slovakia
基金
欧盟地平线“2020”;
关键词
BALLISTIC TRANSPORT; SUSPENDED GRAPHENE; TRANSFER TORQUE; LAYER GRAPHENE; BORON-NITRIDE; SPINTRONICS; SINGLE; FUNDAMENTALS; LIFETIMES;
D O I
10.1103/PhysRevB.99.125151
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We perform extensive first-principles calculations for heterostructures composed of monolayer graphene and hexagonal boron nitride (hBN). Employing a symmetry-derived minimal tight-binding model, we extract orbital and spin-orbit coupling (SOC) parameters for graphene on hBN, as well as for hBN encapsulated graphene. Our calculations show that the parameters depend on the specific stacking configuration of graphene on hBN. We also perform an interlayer distance study for the different graphene/hBN stacks to find the corresponding lowest energy distances. For very large interlayer distances, one can recover the pristine graphene properties, as we find from the dependence of the parameters on the interlayer distance. Furthermore, we find that orbital and SOC parameters, especially the Rashba one, depend strongly on an applied transverse electric field, giving a rich playground for spin physics. Armed with the model parameters, we employ the Dyakonov-Perel formalism to calculate the spin relaxation in graphene/hBN heterostructures. We find spin lifetimes in the nanosecond range, in agreement with recent measurements. The spin relaxation anisotropy, being the ratio of out-of-plane to in-plane spin lifetimes, is found to be giant close to the charge neutrality point, decreasing with increasing doping, and being highly tunable by an external transverse electric field. This is in contrast to bilayer graphene in which an external field saturates the spin relaxation anisotropy.
引用
收藏
页数:16
相关论文
共 95 条
[1]   Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure [J].
Argentero, Giacomo ;
Mittelberger, Andreas ;
Monazam, Mohammad Reza Ahmadpour ;
Cao, Yang ;
Pennycook, Timothy J. ;
Mangler, Clemens ;
Kramberger, Christian ;
Kotakoski, Jani ;
Geim, A. K. ;
Meyer, Jannik C. .
NANO LETTERS, 2017, 17 (03) :1409-1416
[2]   Large scale graphene/h-BN heterostructures obtained by direct CVD growth of graphene using high-yield proximity-catalytic process [J].
Arjmandi-Tash, Hadi ;
Kalita, Dipankar ;
Han, Zheng ;
Othmen, Riadh ;
Nayak, Goutham ;
Berne, Cecile ;
Landers, John ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Marty, Laetitia ;
Coraux, Johann ;
Bendiab, Nedjma ;
Bouchiat, Vincent .
JOURNAL OF PHYSICS-MATERIALS, 2018, 1 (01)
[3]   Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Dauber, Jan ;
Oellers, Martin ;
Haupt, Federica ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
SCIENCE ADVANCES, 2015, 1 (06)
[4]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/NNANO.2009.191, 10.1038/nnano.2009.191]
[5]  
Behin-Aein B, 2010, NAT NANOTECHNOL, V5, P266, DOI [10.1038/nnano.2010.31, 10.1038/NNANO.2010.31]
[6]  
Blaha P., 2001, WIEN2K AUGMENTED PLA, V60, P1
[7]   First-principles calculation of the spin-orbit splitting in graphene [J].
Boettger, J. C. ;
Trickey, S. B. .
PHYSICAL REVIEW B, 2007, 75 (12)
[8]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[9]   Ballistic transport in graphene grown by chemical vapor deposition [J].
Calado, V. E. ;
Zhu, Shou-En ;
Goswami, S. ;
Xu, Q. ;
Watanabe, K. ;
Taniguchi, T. ;
Janssen, G. C. A. M. ;
Vandersypen, L. M. K. .
APPLIED PHYSICS LETTERS, 2014, 104 (02)
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162