Some Results about Ruin Probability in the second Type of Generalized Delayed Renewal Risk Model

被引:0
作者
Fang, Shizu [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Xian 710049, Peoples R China
来源
MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8 | 2012年 / 433-440卷
关键词
Heavy-tailed distributions; Renewal risk model; Generalized delayed renewal risk model; Ruin probability; ASYMPTOTIC-BEHAVIOR; HEAVY TAILS;
D O I
10.4028/www.scientific.net/AMR.433-440.2969
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce the second type of generalized delayed renewal risk model and investigate its ruin probability. Under the assumption that the claim sizes are heavy-tailed, we obtain a tail equivalence relationship of the ruin probability and establish a local asymptotic relationship for the ruin probability.
引用
收藏
页码:2969 / 2973
页数:5
相关论文
共 12 条
  • [1] A local limit theorem for random walk maxima with heavy tails
    Asmussen, S
    Kalashnikov, V
    Konstantinides, D
    Klüppelberg, C
    Tsitsiashvili, G
    [J]. STATISTICS & PROBABILITY LETTERS, 2002, 56 (04) : 399 - 404
  • [2] Asmussen S., 2000, Ruin Probabilities
  • [3] Bjork T., 1985, Scand. Actuar. J, V1985, P148, DOI [10.1080/03461238.1985.10413787, DOI 10.1080/03461238.1985.10413787]
  • [4] Embrechts P., 1997, MODELLING EXTREMAL E, DOI [DOI 10.1007/978-3-642-33483-2, 10.1007/978-3-642-33483-2]
  • [5] Fang S.Z., RUIN PROBAB IN PRESS
  • [6] Grandell J., 1991, Aspects of risk theory
  • [7] Local asymptotic behavior of the survival probability of the equilibrium renewal model with heavy tails
    Jiang, T
    Chen, YQ
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (03): : 300 - 306
  • [8] [孔繁超 kong Fanchao], 2003, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V24, P119
  • [9] Asymptotic behaviour of the finite-time ruin probability under subexponential claim sizes
    Leipus, Remigijus
    Siaulys, Jonas
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (03) : 498 - 508
  • [10] Rolski T., 1999, WILEY PROB STAT