Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images

被引:162
作者
Masood, Anum [1 ,2 ]
Sheng, Bin [1 ]
Li, Ping [3 ]
Hou, Xuhong [4 ]
Wei, Xiaoer [4 ]
Qin, Jing [5 ]
Feng, Dagan [6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci & Engn, Shanghai 200240, Peoples R China
[2] COMSATS Inst Informat Technol, Dept Comp Sci, Islamabad, Pakistan
[3] Macau Univ Sci & Technol, Fac Informat Technol, Macau, Peoples R China
[4] Shanghai Jiao Tong Univ, Affiliated Peoples Hosp 6, Shanghai, Peoples R China
[5] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Hong Kong, Peoples R China
[6] Univ Sydney, Sch Informat Technol, Sydney, NSW, Australia
基金
中国国家自然科学基金;
关键词
Lung cancer stages; Nodule detection; Deep learning; Convolutional neural networks (CNN); mIoT (medical Internet of Things); MBAN (Medical Body Area Network); CONVOLUTIONAL NEURAL-NETWORK; FALSE-POSITIVE REDUCTION; HEALTH-CARE; NODULES; ENSEMBLE; INTERNET; DATABASE; THINGS;
D O I
10.1016/j.jbi.2018.01.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Pulmonary cancer is considered as one of the major causes of death worldwide. For the detection of lung cancer, computer-assisted diagnosis (CADx) systems have been designed. Internet-of-Things (IoT) has enabled ubiquitous interne access to biomedical datasets and techniques; in result, the progress in CADx is significant. Unlike the conventional CADx, deep learning techniques have the basic advantage of an automatic exploitation feature as they have the ability to learn mid and high level image representations. We proposed a Computer-Assisted Decision Support System in Pulmonary Cancer by using the novel deep learning based model and metastasis information obtained from MBAN (Medical Body Area Network). The proposed model, DFCNet, is based on the deep fully convolutional neural network (FCNN) which is used for classification of each detected pulmonary nodule into four lung cancer stages. The performance of proposed work is evaluated on different datasets with varying scan conditions. Comparison of proposed classifier is done with the existing CNN techniques. Overall accuracy of CNN and DFCNet was 77.6% and 84.58%, respectively. Experimental results illustrate the effectiveness of proposed method for the detection and classification of lung cancer nodules. These results demonstrate the potential for the proposed technique in helping the radiologists in improving nodule detection accuracy with efficiency.
引用
收藏
页码:117 / 128
页数:12
相关论文
共 43 条
[1]  
Abdullah A. A., 2012, INFORM ENG LETT, V2, P49
[2]   DETECTION OF LUNG CANCER USING CONTENT BASED MEDICAL IMAGE RETRIEVAL [J].
Agarwal, Ritika ;
Shankhadhar, Ankit ;
Sagar, Raj Kumar .
2015 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION TECHNOLOGIES ACCT 2015, 2015, :48-52
[3]  
Akram S., 2015, Appl. Math. Inf. Sci., V9, P183, DOI DOI 10.12785/AMIS/090124
[4]  
Armato S. G., 2016, CLIN PHARMACOL THER, V84, P448
[5]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[6]  
Armato SG., 2015, The Cancer Imaging Archive, V10, pK9, DOI DOI 10.1117/1.JMI.3.4.044506
[7]  
Bhatt C., 2017, STUDIES IN BIG DATA, V23
[8]   Feature subset selection for improving the performance of false positive reduction in lung nodule CAD [J].
Boeroezky, Lilla ;
Zhao, Luyin ;
Lee, K. P. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2006, 10 (03) :504-511
[9]   Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure - The COMPASS-HF study [J].
Bourge, Robert C. ;
Abraham, William T. ;
Adamson, Philip B. ;
Aaron, Mark F. ;
Aranda, Juan M., Jr. ;
Magalski, Anthony ;
Zile, Michael R. ;
Smith, Andrew L. ;
Smart, Frank W. ;
O'Shaughnessy, Mark A. ;
Jessup, Mariell L. ;
Sparks, Brandon ;
Naftel, David L. ;
Stevenson, Lynne Warner .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2008, 51 (11) :1073-1079
[10]  
Bui Nicola., 2011, Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies - ISABEL'11, P1