Divergence-free radial kernel for surface Stokes equations based on the surface Helmholtz decomposition

被引:9
作者
Li, Jingwei [1 ]
Gao, Zhiming [2 ]
Dai, Zihuan [2 ]
Feng, Xinlong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
关键词
Divergence-free radial kernel; Radial basis function; Surface Stokes equations; Pressure Laplace equation; Surface Helmholtz decomposition; FRACTIONAL-STEP METHOD; FINITE-ELEMENT-METHOD; SCATTERED DATA; INTERPOLATION; APPROXIMATION; ORDER; FLOW;
D O I
10.1016/j.cpc.2020.107408
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we develop and analyze a new divergence-free kernel approximation method for the time-dependent incompressible Stokes equations on surfaces. The novelty of our proposed method comes from the surface Helmholtz decomposition, which can convert the surface Stokes equations into a coupled equations in which the velocity is deadly divergence-free so that no inf-sup conditions have to be satisfied. Spatial discretization of velocity is implemented by the radial kernel divergence-free approximation spaces, which only need scatter nodes on surfaces. Using the radial basis function collocation method in space, we derive the rigorous stability and convergence result. Numerical examples are presented, demonstrating the efficiency of some model problems on more general surfaces. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 2011, INT J NUMER ANAL MOD, DOI DOI 10.1186/1742-2094-8-98
[2]  
Chorin A.J., 1990, A Mathematical Introduction to Fluid Mechanics
[3]  
Chorin AlexandreJoel., 1968, Studies in Numerical Analysis, V2, P64
[4]   A RESCALED LOCALIZED RADIAL BASIS FUNCTION INTERPOLATION ON NON-CARTESIAN AND NONCONFORMING GRIDS [J].
Deparis, Simone ;
Forti, Davide ;
Quarteroni, Alfio .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (06) :A2745-A2762
[5]   A stabilized implicit fractional-step method for the time-dependent Navier-Stokes equations using equal-order pairs [J].
Feng, Xinlong ;
He, Yinnian ;
Huang, Pengzhan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (02) :209-224
[6]   Convergence analysis of an implicit fractional-step method for the incompressible Navier-Stokes equations [J].
Feng, Xinlong ;
He, Yinnian ;
Liu, Demin .
APPLIED MATHEMATICAL MODELLING, 2011, 35 (12) :5856-5871
[7]   SCATTERED DATA INTERPOLATION ON EMBEDDED SUBMANIFOLDS WITH RESTRICTED POSITIVE DEFINITE KERNELS: SOBOLEV ERROR ESTIMATES [J].
Fuselier, Edward ;
Wright, Grady B. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1753-1776
[8]   A radial basis function method for computing Helmholtz-Hodge decompositions [J].
Fuselier, Edward J. ;
Wright, Grady B. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2017, 37 (02) :774-797
[9]  
Gel'fand I., 2014, Generalized Functions: Applications of Harmonic Analysis. Generalized Functions
[10]  
Girault V., 2012, FINITE ELEMENT METHO