EXISTENCE OF SOLUTIONS FOR THE FRACTIONAL (p, q)-LAPLACIAN PROBLEMS INVOLVING A CRITICAL SOBOLEV EXPONENT

被引:5
作者
Chen, Fanfan [1 ]
Yang, Yang [1 ]
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional; (p; q)-Laplacian; non-negative solutions; critical Sobolev exponents; Q LAPLACIAN PROBLEMS; EQUATIONS; MULTIPLICITY;
D O I
10.1007/s10473-020-0604-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the following fractional (p, q)-Laplacian equations involving the critical Sobolev exponent: (P-mu,P-lambda){(-Delta)(p)(s1)(-Delta)(q)(s2) u = mu vertical bar u vertical bar(q-2) u + lambda vertical bar u vertical bar(p-2) u + vertical bar u vertical bar(p)*(s1) (- 2) u, in Omega, u = 0, in R-N \ Omega, where Omega subset of R-N is a smooth and bounded domain, lambda, mu > 0, 0 < s(2)<s(1)< 1, 1 < q < p < N/s(1). We establish the existence of a non-negative nontrivial weak solution to (P-mu,P-lambda) by using the Mountain Pass Theorem. The lack of compactness associated with problems involving critical Sobolev exponents is overcome by working with certain asymptotic estimates for minimizers.
引用
收藏
页码:1666 / 1678
页数:13
相关论文
共 22 条
[1]   EXISTENCE, MULTIPLICITY AND CONCENTRATION FOR A CLASS OF FRACTIONAL p&q LAPLACIAN PROBLEMS IN RN [J].
Alves, Claudianor O. ;
Ambrosio, Vincenzo ;
Isernia, Teresa .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (04) :2009-2045
[2]   Fractional p&q Laplacian Problems in RN with Critical Growth [J].
Ambrosio, Vincenzo .
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2020, 39 (03) :289-314
[3]  
Ambrosio V, 2019, MINIMAX THEORY APPL, V4, P1
[4]  
Ambrosio V, 2018, MEDITERR J MATH, V15, DOI 10.1007/s00009-018-1259-9
[5]  
Aris R, 1979, MATH MODELLING TECHN
[6]   On a class of superlinear (p, q)-Laplacian type equations on RN [J].
Bartolo, R. ;
Candela, A. M. ;
Salvatore, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 438 (01) :29-41
[7]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[8]   An eigenvalue problem for a quasilinear elliptic field equation [J].
Benci, V ;
Micheletti, AM ;
Visetti, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :299-320
[9]  
Bhakta M, 2019, ADV DIFFERENTIAL EQU, V24, P185
[10]  
Brasco L, 2016, Equ, V55, P23, DOI [10.1007/s00526-016-0958-y, DOI 10.1007/S00526-016-0958-Y]