Reducing Hajos' 4-coloring conjecture to 4-connected graphs

被引:8
作者
Yu, XX [1 ]
Zickfeld, F
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Nankai Univ, LPMC, Ctr Combinator, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
coloring; K5-subdivision; connectivity; cycle;
D O I
10.1016/j.jctb.2005.10.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hajos conjectured that, for any positive. integer k, every graph containing no Kk+1-subdivision is k-colorable. This is true when k <= 3, and false when k >= 6. Hajos' conjecture remains open for k=4,5. In this paper, we show that any possible counterexample to this conjecture for k=4 with minimum number of vertices must be 4-connected. This is a step in an attempt to reduce Hajos' conjecture for k=4 to the conjecture of Seymour that any 5-connected non-planar graph contains a K-5-subdivision. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:482 / 492
页数:11
相关论文
共 13 条
[1]  
[Anonymous], COMMUNICATION
[2]   HAJOS GRAPH-COLORING CONJECTURE - VARIATIONS AND COUNTEREXAMPLES [J].
CATLIN, PA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 26 (02) :268-274
[3]  
Dirac G. A., 1952, J. London Math. Soc., V27, P85
[4]   ON THE CONJECTURE OF HAJOS [J].
ERDOS, P ;
FAJTLOWICZ, S .
COMBINATORICA, 1981, 1 (02) :141-143
[5]  
HADWIGER HUGO, 1943, Vierteljahrsschr Naturforsch Ges Zurich, V88, P133
[6]   DO 3N - 5 EDGES FORCE A SUBDIVISION OF K-5 [J].
KEZDY, AE ;
MCGUINNESS, PJ .
JOURNAL OF GRAPH THEORY, 1991, 15 (04) :389-406
[7]   Topological minors in graphs of large girth [J].
Kühn, D ;
Osthus, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 86 (02) :364-380
[8]  
KUHN D, IN PRESS SIAM J DISC
[9]  
Mader W, 1998, COMBINATORICA, V18, P569, DOI 10.1007/s004930050041
[10]   HADWIGER CONJECTURE FOR K(6)-FREE GRAPHS [J].
ROBERTSON, N ;
SEYMOUR, P ;
THOMAS, R .
COMBINATORICA, 1993, 13 (03) :279-361