MRI radiomics analysis of molecular alterations in low-grade gliomas

被引:76
作者
Shofty, Ben [1 ,2 ]
Artzi, Moran [2 ,3 ]
Ben Bashat, Dafna [2 ,3 ,5 ]
Liberman, Gilad [4 ]
Haim, Oz [1 ]
Kashanian, Alon [1 ,2 ]
Bokstein, Felix [2 ,6 ]
Blumenthal, Deborah T. [2 ,6 ]
Ram, Zvi [1 ,2 ]
Shahar, Tal [1 ,7 ]
机构
[1] Tel Aviv Sourasky Med Ctr, Div Neurosurg, 6 Weizman St, IL-64239 Tel Aviv, Israel
[2] Tel Aviv Univ, Sackler Fac Med, Tel Aviv, Israel
[3] Tel Aviv Sourasky Med Ctr, Funct Brain Ctr, 6 Weizman St, IL-64239 Tel Aviv, Israel
[4] Weizmann Inst Sci, Dept Chem Phys, Rehovot, Israel
[5] Tel Aviv Univ, Sagol Sch Neurosci, Tel Aviv, Israel
[6] Tel Aviv Med Ctr & Sch Med, Neurooncol Serv, Tel Aviv, Israel
[7] Shaare Zedek Med Ctr, Dept Neurosurg, Jerusalem, Israel
关键词
MRI; Radiomics; Low-grade gliomas; 1p/19q Codeletion; Machine learning classifiers; MAGNETIC-RESONANCE-SPECTROSCOPY; IDH1; MUTATION; GLIOBLASTOMA-MULTIFORME; GENOMIC ANALYSIS; CLASSIFICATION; FEATURES; IMAGES; TUMORS; 2-HYDROXYGLUTARATE; MARKERS;
D O I
10.1007/s11548-017-1691-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Low-grade gliomas (LGG) are classified into three distinct groups based on their IDH1 mutation and 1p/19q codeletion status, each of which is associated with a different clinical expression. The genomic sub-classification of LGG requires tumor sampling via neurosurgical procedures. The aim of this study was to evaluate the radiomics approach for noninvasive classification of patients with LGG and IDH mutation, based on their 1p/19q codeletion status, by testing different classifiers and assessing the contribution of the different MR contrasts. Preoperative MRI scans of 47 patients diagnosed with LGG with IDH1-mutated tumors and a genetic analysis for 1p/19q deletion status were included in this study. A total of 152 features, including size, location and texture, were extracted from fluid-attenuated inversion recovery images, -weighted images (WI) and post-contrast . Classification was performed using 17 machine learning classifiers. Results were evaluated by a fivefold cross-validation analysis. Radiomic analysis differentiated tumors with 1p/19q intact (; astrocytomas) from those with 1p/19q codeleted (; oligodendrogliomas). Best classification was obtained using the Ensemble Bagged Trees classifier, with sensitivity 92%, specificity 83% and accuracy 87%, and with area under the curve 0.87. Tumors with 1p/19q intact were larger than those with 1p/19q codeleted ( vs. cc, respectively; ) and predominantly located to the left insula (). The proposed method yielded good discrimination between LGG with and without 1p/19q codeletion. Results from this study demonstrate the great potential of this method to aid decision-making in the clinical management of patients with LGG.
引用
收藏
页码:563 / 571
页数:9
相关论文
共 31 条
[21]   Non-invasive detection of 2-hydroxyglutarate and other metabolites in IDH1 mutant glioma patients using magnetic resonance spectroscopy [J].
Pope, Whitney B. ;
Prins, Robert M. ;
Thomas, M. Albert ;
Nagarajan, Rajakumar ;
Yen, Katharine E. ;
Bittinger, Mark A. ;
Salamon, Noriko ;
Chou, Arthur P. ;
Yong, William H. ;
Soto, Horacio ;
Wilson, Neil ;
Driggers, Edward ;
Jang, Hyun G. ;
Su, Shinsan M. ;
Schenkein, David P. ;
Lai, Albert ;
Cloughesy, Timothy F. ;
Kornblum, Harley I. ;
Wu, Hong ;
Fantin, Valeria R. ;
Liau, Linda M. .
JOURNAL OF NEURO-ONCOLOGY, 2012, 107 (01) :197-205
[22]   Diagnostic performance of texture analysis on MRI in grading cerebral gliomas [J].
Skogen, Karoline ;
Schulz, Anselm ;
Dormagen, Johann Baptist ;
Ganeshan, Balaji ;
Helseth, Eirik ;
Server, Andres .
EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (04) :824-829
[23]   Fast robust automated brain extraction [J].
Smith, SM .
HUMAN BRAIN MAPPING, 2002, 17 (03) :143-155
[24]   MR Imaging-Based Analysis of Glioblastoma Multiforme: Estimation of IDH1 Mutation Status [J].
Yamashita, K. ;
Hiwatashi, A. ;
Togao, O. ;
Kikuchi, K. ;
Hatae, R. ;
Yoshimoto, K. ;
Mizoguchi, M. ;
Suzuki, S. O. ;
Yoshiura, T. ;
Honda, H. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (01) :58-65
[25]   IDH1 and IDH2 Mutations in Gliomas [J].
Yan, Hai ;
Parsons, D. Williams ;
Jin, Genglin ;
McLendon, Roger ;
Rasheed, B. Ahmed ;
Yuan, Weishi ;
Kos, Ivan ;
Batinic-Haberle, Ines ;
Jones, Sian ;
Riggins, Gregory J. ;
Friedman, Henry ;
Friedman, Allan ;
Reardon, David ;
Herndon, James ;
Kinzler, Kenneth W. ;
Velculescu, Victor E. ;
Vogelstein, Bert ;
Bigner, Darell D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2009, 360 (08) :765-773
[26]   MnTBAP Therapy Attenuates Renal Fibrosis in Mice with 5/6 Nephrectomy [J].
Yu, Jing ;
Mao, Song ;
Zhang, Yue ;
Gong, Wei ;
Jia, Zhanjun ;
Huang, Songming ;
Zhang, Aihua .
OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2016, 2016
[27]   Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma [J].
Yu, Jinhua ;
Shi, Zhifeng ;
Lian, Yuxi ;
Li, Zeju ;
Liu, Tongtong ;
Gao, Yuan ;
Wang, Yuanyuan ;
Chen, Liang ;
Mao, Ying .
EUROPEAN RADIOLOGY, 2017, 27 (08) :3509-3522
[28]   Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas [J].
Zhang, Biqi ;
Chang, Ken ;
Ramkissoon, Shakti ;
Tanguturi, Shyam ;
Bi, Wenya Linda ;
Reardon, David A. ;
Ligon, Keith L. ;
Alexander, Brian M. ;
Wen, Patrick Y. ;
Huang, Raymond Y. .
NEURO-ONCOLOGY, 2017, 19 (01) :109-117
[29]   Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].
Zhang, YY ;
Brady, M ;
Smith, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2001, 20 (01) :45-57
[30]   MRI features predict survival and molecular markers in diffuse lower-grade gliomas [J].
Zhou, Hao ;
Vallieres, Martin ;
Bai, Harrison X. ;
Su, Chang ;
Tang, Haiyun ;
Oldridge, Derek ;
Zhang, Zishu ;
Xiao, Bo ;
Liao, Weihua ;
Tao, Yongguang ;
Zhou, Jianhua ;
Zhang, Paul ;
Yang, Li .
NEURO-ONCOLOGY, 2017, 19 (06) :862-870