Multiobjective evolutionary algorithms for electric power dispatch problem

被引:456
作者
Abido, M. A. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Elect Engn, Dhahran 31261, Saudi Arabia
关键词
economic power dispatch; emission reduction; environmental impact; evolutionary algorithms; multiobjective optimization;
D O I
10.1109/TEVC.2005.857073
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The potential and effectiveness of the newly developed Pareto-based multiobjective evolutionary algorithms (MOEA) for solving a real-world power system multiobjective nonlinear optimization problem are comprehensively discussed and evaluated in this paper. Specifically, nondominated sorting genetic algorithm, niched Pareto genetic algorithm, and strength Pareto evolutionary algorithm (SPEA) have been developed and successfully applied to an environmental/economic electric power dispatch problem. A new procedure for quality measure is proposed in this paper in order to evaluate different techniques. A feasibility check procedure has been developed and superimposed on MOEA to restrict the search to the feasible region of the problem space. A hierarchical clustering algorithm is also imposed to provide the power system operator with a representative and manageable Pareto-optimal set. Moreover, an approach based on fuzzy set theory is developed to extract one of the Pareto-optimal solutions as the best compromise one. These multiobjective evolutionary algorithms have been individually examined and applied to the standard IEEE 30-bus six-generator test system. Several optimization runs have been carried out on different cases of problem complexity. The results of MOEA have been compared to those reported in the literature. The results confirm the potential and effectiveness of MOEA compared to the traditional multiobjective optimization techniques. In addition, the results demonstrate the superiority of the SPEA as a promising multiobjective evolutionary algorithm to solve different power system multiobjective optimization problems.
引用
收藏
页码:315 / 329
页数:15
相关论文
共 45 条
[1]   Environmental/economic power dispatch using multiobjective evolutionary algorithms [J].
Abido, MA .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2003, 18 (04) :1529-1537
[2]   A novel multiobjective evolutionary algorithm or environmental/economic power dispatch [J].
Abido, MA .
ELECTRIC POWER SYSTEMS RESEARCH, 2003, 65 (01) :71-81
[3]  
Abido MA, 2001, 2001 POWER ENGINEERING SOCIETY SUMMER MEETING, VOLS 1-3, CONFERENCE PROCEEDINGS, P1263, DOI 10.1109/PESS.2001.970254
[4]   A niched Pareto genetic algorithm for multiobjective environmental/economic dispatch [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (02) :97-105
[5]  
ABIDO MA, 2002, P 14 POW SYST COMP C
[6]  
Abou El-Ela A. A., 1992, Modelling, Simulation & Control A, V41, P19
[7]  
[Anonymous], 1995, THESIS CITESEER
[8]  
[Anonymous], 1994, P 1 IEEE C EV COMP I
[9]  
[Anonymous], 1998, 43 TIK
[10]   ASSESSING THE INFLUENCE OF POWER POOLS ON EMISSION CONSTRAINED ECONOMIC-DISPATCH [J].
BRODSKY, SFJ ;
HAHN, RW .
IEEE TRANSACTIONS ON POWER SYSTEMS, 1986, 1 (01) :57-62