On stability of nonlinear hyperbolic systems with reaction and switching

被引:0
作者
Yang, Hao [1 ]
Jiang, Bin [1 ]
Cocquempot, Vincent
Aitouche, Abdel
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Automat Engn, Nanjing, Peoples R China
来源
2013 AMERICAN CONTROL CONFERENCE (ACC) | 2013年
关键词
Nonlinear hyperbolic partial differential equation; Switched systems; Stability; Boundary control; BOUNDARY CONTROL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the exponential stability in L-2 norm of scalar nonlinear hyperbolic systems of balance laws with the reaction that may be accumulative or dissipative. Two Lyapunov-based stability criteria that depend on the system parameters and boundary data are proposed with fully considering the reactions' characteristics. The new results can help to construct a common Lyaunov function to stabilize the switched nonlinear hyperbolic systems under arbitrary switching. Several traffic system examples are taken to illustrate the theoretical results.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 23 条
[1]   Exponential Stability of Switched Linear Hyperbolic Initial-Boundary Value Problems [J].
Amin, Saurabh ;
Hante, Falk M. ;
Bayen, Alexandre M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (02) :291-301
[2]   On boundary feedback stabilization of non-uniform linear 2 x 2 hyperbolic systems over a bounded interval [J].
Bastin, Georges ;
Coron, Jean-Michel .
SYSTEMS & CONTROL LETTERS, 2011, 60 (11) :900-906
[3]  
Bayen A. M., LECT NOTES COMPUTER, V2993, P95
[4]   Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems [J].
Coron, Jean-Michel ;
Bastin, Georges ;
d'Andrea-Novel, Brigitte .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (03) :1460-1498
[5]   A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws [J].
Coron, Jean-Michel ;
d'Andrea-Novel, Brigitte ;
Bastin, Georges .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (01) :2-11
[6]   Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws [J].
Diagne, Ababacar ;
Bastin, Georges ;
Coron, Jean-Michel .
AUTOMATICA, 2012, 48 (01) :109-114
[7]   An example for the switching delay feedback stabilization of an infinite dimensional system: The boundary stabilization of a string [J].
Gugat, Martin ;
Tucsnak, Marius .
SYSTEMS & CONTROL LETTERS, 2011, 60 (04) :226-233
[8]   Modeling and Analysis of Modal Switching in Networked Transport Systems [J].
Hante, Falk M. ;
Leugering, Gunter ;
Seidman, Thomas I. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 59 (02) :275-292
[9]   Nonlinear norm-observability notions and stability of switched systems [J].
Hespanha, JP ;
Liberzon, D ;
Angeli, D ;
Sontag, ED .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (02) :154-168
[10]  
Kreiss H.-O., 1975, Proceedings of the 4th International Conference on Numerical Methods in Fluid Dynamics, P22, DOI 10.1007/BFb0019724