Hydrodynamics of Leidenfrost droplets in one-component fluids

被引:17
作者
Xu, Xinpeng [1 ]
Qian, Tiezheng [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Hong Kong Univ Sci & Technol, KAUST HKUST Micro & Nanofluid Joint Lab, Kowloon, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
VOLATILE LIQUID DROPLETS; MODEL; DROPS; POINT; FLOWS;
D O I
10.1103/PhysRevE.87.043013
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study [Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109, 034501 (2012)]. DOI:10.1103/PhysRevE.87.043013
引用
收藏
页数:14
相关论文
共 61 条
[1]   Spreading of thin volatile liquid droplets on uniformly heated surfaces [J].
Ajaev, VS .
JOURNAL OF FLUID MECHANICS, 2005, 528 :279-296
[2]   THE SPREADING OF VOLATILE LIQUID DROPLETS ON HEATED SURFACES [J].
ANDERSON, DM ;
DAVIS, SH .
PHYSICS OF FLUIDS, 1995, 7 (02) :248-265
[3]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[4]   Kapitza resistance at the liquid-solid interface [J].
Barrat, JL ;
Chiaruttini, F .
MOLECULAR PHYSICS, 2003, 101 (11) :1605-1610
[5]   The Leidenfrost point: Experimental study and assessment of existing models [J].
Bernardin, JD ;
Mudawar, I .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (04) :894-903
[6]   Leidenfrost drops [J].
Biance, AL ;
Clanet, C ;
Quéré, D .
PHYSICS OF FLUIDS, 2003, 15 (06) :1632-1637
[7]  
Bird R B., 2002, Transportphenomena
[8]   Static and dynamic contact angles - A phase field modelling [J].
Borcia, R. ;
Borcia, I. D. ;
Bestehorn, M. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 166 :127-131
[9]   Lattice Boltzmann simulations of contact line motion. II. Binary fluids [J].
Briant, AJ ;
Yeomans, JM .
PHYSICAL REVIEW E, 2004, 69 (03) :9
[10]   Star-drops formed by periodic excitation and on an air cushion - A short review [J].
Brunet, P. ;
Snoeijer, J. H. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 192 (01) :207-226