The Lp Dirichlet problem for elliptic systems on Lipschitz domains

被引:1
作者
Shen, ZW [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
elliptic systems; Dirichlet problems; polyharmonic equations; Lipschitz domains;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a new approach to the LP Dirichlet problem via L-2 es timates and reverse Holder inequalities. We apply this approach to second order elliptic systems and the polyharmonic equation on a bounded Lipschitz domain Omega in R-n. For n >= 4 and 2 - epsilon < p < 2(n-1)/n-3 + epsilon, we establish the solvability of the Dirichlet problem with boundary data in L-p (partial derivative Omega). In the case of the polyharmonic equation Delta(l)u = 0 with l >= 2, the range of p is sharp if 4 <= n <= 2l + 1.
引用
收藏
页码:143 / 159
页数:17
相关论文
共 28 条
[1]  
[Anonymous], ANN MATH STUDIES
[2]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[3]  
DAHLBERG B, 1977, ARCH RATION MECH AN, V65, P273
[4]  
Dahlberg B., 1990, LECTURE NOTES PURE A, V122, P621
[5]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[6]   BOUNDARY-VALUE PROBLEMS FOR THE SYSTEMS OF ELASTOSTATICS IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
DUKE MATHEMATICAL JOURNAL, 1988, 57 (03) :795-818
[7]   Area integral estimates for higher order elliptic equations and systems [J].
Dahlberg, BEJ ;
Kenig, CE ;
Pipher, J ;
Verchota, GC .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) :1425-+
[8]   ON THE POISSON INTEGRAL FOR LIPSCHITZ AND C1-DOMAINS [J].
DAHLBERG, BEJ .
STUDIA MATHEMATICA, 1979, 66 (01) :13-24
[9]   HARDY-SPACES AND THE NEUMANN PROBLEM IN L-RHO FOR LAPLACES-EQUATION IN LIPSCHITZ-DOMAINS [J].
DAHLBERG, BEJ ;
KENIG, CE .
ANNALS OF MATHEMATICS, 1987, 125 (03) :437-465
[10]  
FABES E, 1988, LECT NOTES MATH, V1344, P55